y-y-2y=e的 X次方 通解

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 11:09:28
y-y-2y=e的 X次方 通解
y"-y=e^x的通解

∵y"-y=0的特征方程是r²-1=0,则r=±1∴y"-y=0的通解是y=C1e^x+C2e^(-x)(C1,C2是积分常数)∵设原方程的一个解为y=Axe^x代入原方程得2Ae^x=e^

求微分方程y'=e^(2x-y)的通解

y'=e^(2x)/e^ye^ydy=e^(2x)dxe^y=(1/2)e^(2x)+Cy=ln[(1/2)e^(2x)+C]

y''+y=x+e^x的通解

由已知,根据定理:两个具有共同常系数的方程的特解之和为这两个方程非齐次项(函数项)和形成的方程的特解.有所求方程的特解y*=x+e^x.接下来只需求二阶线性齐次方程y"+y=0的通解Y,最后得所求方程

y''-y=e^|x|的通解

解微分方程的时候不要在意这种在常数上的一点点区别,这样来想,你是解得y=c1*e^x+c2*e^(-x)+1/2*x*e^x那么如果令c1=d1-1/2,c2=d2+1/2,就得到y=(d1-1/2)

y''-2y'+y=e^-x的通解

特征方程r^-2r+1=0r=1(二重根)所以齐次通解是y=(C1x+C2)e^x设特解是y=ae^(-x)y'=-ae^(-x)y''=ae^(-x)代入原方程得ae^(-x)+2ae^(-x)+a

y’+y=e^-x的通解

对应齐次方程是y'+y=0其通解是y=Ce^(-x),C是任意常数设方程的一个特解是y*=axe^(-x),代入方程得ae^(-x)-axe^(-x)+axe^(-x)=e^(-x)ae^(-x)=e

(e的x+y次方-e的x次方)dx+(e的x+y次方+e的y次方)dy=0求通解

e^(x+y)-e^x+[e^(x+y)+e^y]•dy/dx=0[e^(x+y)+e^y]•dy/dx=e^x-e^(x+y)=e^x•(1-e^y)dy/dx=

常微分[e(x+y)的次方-e的x次方]dx+{e(x+y)的次方+e的y次}dy=0的通解

移项[exp(x+y)-exp(x)]dx=-[exp(x+y)+exp(y)]dy化简得{exp(x)/[1+exp(x)]}dx={exp(y)/[1-exp(y)]}dy积分得ln[1+exp(

求微分方程y''-2y'+5y=(3x+2)e的x次方的通解

特征方程为t²-2t+5=0解得t=1±2i所以齐次方程的通解y1=e^x(C1cos2x+C2sin2x)设特解为y*=(ax+b)e^x则y*'=(ax+b+a)e^xy*"=(ax+b

求微分方程y"+3y+2y=e的x次方的通解

题目应该是y"+3y'+2y=e^x吧?特征方程为r^2+3r+2=0,得r=-1,-2即齐次方程的通解y1=C1e^(-x)+C2e^(-2x)设特解y*=ae^x,代入方程得:ae^x+3ae^x

求方程通解 (x+1)y′-2y=(x+1)的4次方 y″+2y′=3e的-2x次方

(x+1)y'-2y=(x+1)^4(x+1)dy/dx-2y=(x+1)^4dx=d(x+1)(x+1)dy/d(x+1)-2y=(x+1)^4(x+1)dy-2yd(x+1)=(x+1)^4d(x

y'-2y=e^x的通解

答:原方程特征方程为r-2=0,解的特征根为r=2.原方程的齐次方程为dy/dx-2y=0,得:dy=2ydx,即dy/2y=dx.两边积分得:1/2*ln|y|=x+C1即ln|y|=2x+C2y=

y,=e^-x的通解

设p=y’,y''=dp/dx=e^-x,dp=e^-xdx,p=-e^-x+C1=y'dy=(-e^-x+C1)dx,y=e^-x+C1X+C2

求微分方程y''-y'+2y=e^X通解

特征方程R^2-R+2=0,特征方程的解为R1=-1,R2=2;微分方程特解为C1e^(-x)+C2e^(2x);特解为1/2e^x;通解为y=C1e^(-x)+C2e^(2x)+1/2e^x;C1,

y'e^(x-y)=1通解?

y'e^(x-y)=1即dy/e^y=dx/e^x等式两边积分得到e^(-y)=e^(-x)+C,C为常数所以方程的通解为:y=-ln|e^(-x)+C|,C为常数

一阶微分方程y'=e的2x-y次方的通解

x2+1)(y2-1)dx+xydy=0ydy/(y^2-1)=-(x+1/x)dx两边积分(1/2)ln|y^2-1|=-x^2/2-ln|x|+C1ln|y^2-1|=-x^2-2ln|x|+2C

求y'-y=e^x通解,

y'-y=0-->y=e^xy'-y=e^x-->y=(1+x)e^x通解