y,,-y,-2y=ex的通解

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:03:41
y,,-y,-2y=ex的通解
y"+y'=x的通解,

特征方程为a^2+a=0,解得a=0或a=-1,因此齐次方程的通解为y=C1+C2e^(-x).再求非齐次方程的一个特解.设特解为y=ax^2+bx+c,y‘=2ax+b,y''=2a,代入得2ax+

y"-y=e^x的通解

∵y"-y=0的特征方程是r²-1=0,则r=±1∴y"-y=0的通解是y=C1e^x+C2e^(-x)(C1,C2是积分常数)∵设原方程的一个解为y=Axe^x代入原方程得2Ae^x=e^

求y''-y=x的通解

∵齐次方程y''-y'=0的特征方程是r2-r=0则特征根是r1=0,r2=1∴齐次方程的通解是y=(C1x+C2)e^x(C1,C2是积分常数)设原微分方程的一个特解是y=Ax2+Bx代入原微分方程

(2x-y^2)y’=2y的通解

求微分方程(2x-y²)y'=2y的通解由原式得:(2x-y²)dy=2ydx,即有2ydx+(y²-2x)dy=0.(1)P=2y,Q=y²-2x;ͦ

求微分方程2y″+y′-y=2ex的通解.

∵微分方程两边除以2,得同解的微分方程y″+12y′−12y=ex对应的齐次方程为y″+12y′−12y=0∴特征方程为r2+12r−12=0,解得特征根为:r1=−1,r2=12∴齐次方程的通解为:

用常数变易法求微分方程y'-y=ex的通解?

求微分方程y'-y=ex的通解为了求这个方程的解,先考虑齐次线性方程:dy/dx-y=0,即有dy/y=dx,积分之得lny=x+lnC₁,于是得其通解为y=e^(x+lnC₁

求微分方程y”+y=ex的通解

特征方程为r^2+1=0,r=±i所以y1=C1sinx+C2cosx设y2=Ae^x则y2''=Ae^x2A=1,A=1/2所以y=y1+y2=C1sinx+C2cosx+e^x/2再问:确定吗?怎

求助微分方程y"=y"'的通解

再答:前面打掉了一行,令y“=p

y''-2y'+y=e^-x的通解

特征方程r^-2r+1=0r=1(二重根)所以齐次通解是y=(C1x+C2)e^x设特解是y=ae^(-x)y'=-ae^(-x)y''=ae^(-x)代入原方程得ae^(-x)+2ae^(-x)+a

y''+2y'+y=x的通解

∵齐次方程y"+2y'+y=0的特征方程是r^2+2r+1=0,则r=-1(二重根)∴此齐次方程的通解是y=(C1x+C2)e^(-x)(C1,C2是常数)∵设原方程的解为y=Ax+B代入原方程,得A

求微分方程y"-2y'+y=0的通解.

你这个是二阶常系数齐次线性微分方程属于r1=r2=1的情况代入公式,y=(C1+C2x)e^(r1x)=(C1+C2x)e^x好好看看书,公式要记得!

2y+y=0的通解

等于0(什么叫通解?)

求此微分方程的通解:y''+y'=y'y

令p=y'则y"=pdp/dy代入原式:pdp/dy+p=pydp/dy+1=ydp=(y-1)dy积分:p=(y-1)²/2+c1即dy/dx=(y-1)²/2+c12dy/[(

微积分y’’+2y’+5y=0的通解

特征方程a^2+2a+5=0有共轭复根-1+2i,-1-2i所以通解为y=e^(-x)(C1cos2x+C2sin2x)再问:C1��ʲô再问:�������e��-x��再问:�躯��xe��sin

1、求下列微分方程的通解:(1)2y‘’+y‘-y=2ex (2)2y‘’+5y‘=5x2-2x-1 (3)y‘’-6y

(1)∵它的特征方程是2r²+r-1=0,则r1=-1,r2=1/2∴它对应的齐次方程的通解是y=C1e^(-x)+C2e^(1/2)(C1,C2是积分常数)显然,y=e^x是原方程的特解故

求微分方程y''+y'-2y=0 的通解.

设y=e^ax带入y''+y'-2y=0求导化简得a^2+a-2=0(a-1)(a+2)=0a=1,a=-2通解为y=e^x+e^-2x+c

求微分方程y"-y'-2y=0的通解

特征方程为r²-r-2=0解得r1=2,若=-1∴原方程的通解为:y=C1e^(2x)+C2e^(-x)

微分方程y"+y'+2y=0的通解

对应的特征方程是a^2+a+2=0,解得a是α±iβ的形式的,那么通解就是c1*e^(αx)*sin(βx)+c2*e^(αx)*cos(βx)

y'''+2y''+y'=0的通解

这是高阶齐次线性微分方程,采用求特解的方法.原方程的特征方程是