x趋于0时 2^x同阶无穷小

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 13:38:21
x趋于0时 2^x同阶无穷小
设f(x)=(2^x)-1,当x趋近0时f(x)是x的() A,高阶无穷小B,低阶无穷小C,等价无穷小 D,同阶但不等价

处理无穷小的问题可以通过做商来处理lim(x→0)(2^x-1)/x不难发现此极限属于0/0型,故用洛必达法则=lim(x→0)(2^x*ln2)/1=ln2(ln2>0)所以,当x趋近0时f(x)是

高数 当X-0时,1-cos2X是x^2的 A高阶无穷小 B等价无穷小 C低阶无穷小 D同阶但非等价无穷小

D:用等价无穷小替换,1-cos2x~(2x)²*1/2=2x²,比上x²,等于2,常数,所以是同阶无穷小,不是等价无穷小.

当x趋于0时,确定无穷小e^x+sinx-1关于基本无穷小x的阶数.

就是求lim(x趋近0){[e^x+sinx-1]/x}可以用洛必达法则.对{[e^x+sinx-1]/x}的分子分母分别求导,得到{[e^x+cosx]}/1当x趋近0时,得1+1=2,所以无穷小e

设f(x)=3xln(1-x^2),g(x)=sin^2,则x趋于0时f(x)是g(x)的同阶还是等价还是高阶无穷小?

f(x)是g(x)的高阶无穷小.ln(1-x²)~-x²,所以f(x)~-3x³,g(x)=sin²x~x²再问:那么麻烦再问一下,这种ln(1-x&

二维随机函数当X趋于无穷小,Y趋于无穷大时,函数趋于1还是0

因为归一性,在x,y取值范围内的积分(或者级数)必为1,因此无穷大的时候分布函数必须趋于0,不然积分(或者级数)不会收敛

x趋于0时、tanx+sinx是x的一阶无穷小、 tanx--sinx却是x的三阶无穷小、是为什么

用泰勒公式展开很好理解sinx=x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+…….(-∞

关于无穷小的比较 1、 当x趋于1时,(1-x^3)^2是1-x 的几阶无穷小?2 x趋于0时,求 lim [(根号下(

1.(1-x^3)^2=(1-x)^2(1+x+x^2)^2是1-x的二阶无穷小.2.lim[(√(1+x+x^2))-1]/sin2x=lim{(1+2x)/[2√(1+x+x^2)]/2cos(2

设f(x)=2^x+3^x-2,则当x趋于0时,f(x)是x的同阶但非等价无穷小 有一步不太明白

那一步是利用洛必达法则得到的分别对分子分母求导分子求导后为2^x·ln2+3^x·ln3分母求导后为:1

如何证明当x趋于0时1-cos2x是x的高阶无穷小

再答:相除等于1是等价无穷小再答:0是高阶无穷小无穷是低阶

当x→0时,下列函数那些是x的同阶无穷小?等价无穷小?高阶无穷小?低阶无穷小?

√(x^2+1)-1=[√(x^2+1)-1][√(x^2+1)+1]/[√(x^2+1)+1]=x^2/[√(x^2+1)+1]~x^2/[1+1]=x^2/2,因此为x的高阶无穷小因为|xsin1

x趋于0时,根号x与根号x的正弦是等价无穷小吗?

是等价无穷小,证明请看图片.

当x趋于0时,x(x+sinx)与x平方比较是:同阶但不等价无穷小 为何.

就是对于无穷小f(x)、g(x)x→0,limf(x)/x^kf(x)、g(x)同阶,就是limf(x)/g(x)=不为0的常数,若等于1,则为等价无穷小f(x)比g(x)高阶,就是limf(x)/g

当X趋于0时,X与Sinx(tanx+x^2)相比,哪一个是高阶无穷小

sinx(tanx+x^2)~x*tanx~x*x=x^2(当x->0时)因此sinx(tanx+x^2)为高阶无穷小再问:(tanx+x^2)~tanx这个是为什么呢?这个地方没懂。。而且高阶无穷小

一道关于微积分的题目当x趋于0时,(e^tanx)-e^x与x^n是同阶无穷小,则n为多少?

分子两项一阶泰勒展开分别为:1+tanx和1+x相减为tanx-xtanx三阶泰勒展开=x+x^3/3所以分子为x^3/3所以n=3

当X趋于0时,X的平方减sinX是X 箭头朝零 是高阶无穷小,还是等阶无穷小,还是低阶无穷小

是x的高阶无穷小,你说的箭头朝0没理解你是什么意思,高阶无穷小的定义是当x->0时,limx/y=0,x是y的高阶无穷小.若limx/y=无穷,则x是y的低阶无穷小,若limx/y=1,则x是y的等价

当x趋向于0时,sinx与x比较,sinx是高阶无穷小,低阶无穷小,同阶无穷小,还是等阶无穷小?

因为lim(sinx/x)=1(x趋向于0时),所以是等价无穷小.等价无穷小是同阶无穷小中的一种.所以也是同阶无穷小.

当X趋于0时,1-sin(ax)与X的3次方是同阶无穷小,则a=?

lim[x-sin(ax)]/x^3(洛必塔)=lim[1-a*cos(ax)]/3x^2(为了满足洛必塔,此时应有当x=0时,1-a*cos(ax)=0,所以a=1)=lim[sin(x)]/6x=

已知当x趋于0时,(e^(x^2)-(ax^2+bx+c))是比x^2高阶的无穷小,试确定常数a,b,c.

lim(e^(x^2)-(ax^2+bx+c))/x²=0即Lim(e^(x^2)-(ax^2+bx+c))=01-c=0c=1lim[(e^(x^2)-1]-(ax^2+bx))/x