X服从N(0,1)求E(X的4次方)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 12:44:42
注意到Y-1也是N(0,1)与同分布,即是求P[3X+4(Y-1)
这是二维的Maxwell分布,你学大学物理会遇到三维的.不过对于只求期望的话,不用求它的分布函数.E((X^2+Y^2)^(1/2))=∫∫(x^2+y^2)^(1/2)dF(x,y)=∫∫(x^2+
Z=min(X,Y),Fmin(z)=1-{1-FX(z)}{1-FY(z)}.对Fmin(z)关于z求导,则求出min(X,Y)的概率密度.那么求E[min(X,Y)]根据公式即可!还有一种解法:Z
E(Z)=E(X^2+Y^2)=E(X^2)+E(Y^2)=[DX+(EX)^2]+[DX+(EX)^2]=1+0+1+0=2因为DX=E(X^2)-(EX)^2D(Z)=D(X^2+Y^2)=D(X
由于相互独立,EXY=EX*EY=1*2=2泊松分布的期望等于纳姆达=1二项分布的期望等于np=4*0.5=2
XU(0,1)密度函数:等于:1当0再问:这是标准答案了吧?再答:按公式计算而得:若x的概率密度函数为f(x),那么随机变量x的函数g(x)的数学期望和方差分别为:E[g(x)]=∫g(x)f(x)d
楼上方差错了方差(x*(e^x-1)^2在(0,1)上的积分)
设X服从泊松分布,参数为λ,那么EX=λ,DX=λ,所以E[X(X-1)]=E(X^2)-EX=DX+(EX)^2-EX=λ+λ^2-λ=λ^2.也可以直接根据定义E[X(X-1)]=sum(n(n-
参数为1,就是λ为1
φ(x)=[1/(根号2π)]e^[-(x^2)/2]故:f(x,y)=φ(x)*φ(y)=[1/(2π)]e^[-(x^2+y^2)/2].故:E((X^2+Y^2)^(1/2))=∫∫[(x^2+
φ(x)=[1/(根号2π)]e^[-(x^2)/2]故:f(x,y)=φ(x)*φ(y)=[1/(2π)]e^[-(x^2+y^2)/2].故:E((X^2+Y^2)^(1/2))=∫∫[(x^2+
根号(2*pi)积分可以化成极坐标做.
X~N(0,1)则Y=X^2~~卡方分布X^2(1)所以EX^2=1E(X^4)=DY+(EY)^2=2+1=3E(X^3)=0.pdf概率密度函数关于y对称.当然,也是可以像沙发同志那样做.不过有点
Z=min(X,Y),Fmin(z)=1-{1-FX(z)}{1-FY(z)}.对Fmin(z)关于z求导,则求出min(X,Y)的概率密度.那么求E[min(X,Y)]根据公式即可!还有一种解法:Z
P(X>5|X>3)=P(X>5,X>3)/P(X>3)=P(X>5)/P(X>3)=[1-F(5)]/[1-F(3)].F(x)为其分布函数.f(x)=e^-x,x>0;0,x为其余对应的分布函数为
E(X)=∫(-∞,∞)e^y*(1/2π)^(1/2)*e^((y-u)/2)^2dy=e^(1/2+u)
p=cov(x,y)/[√D(x)*√D(y)]cov(x,y)=E(x*y)-E(x)*E(y)=E(x^3)-E(x)*E(x^2)=E(x^3)=∫∞(x³*e^(-x²/2
FY(y)=P{Y小于等于y}=P{e*X小于等于y}=P{X小于等于lny}=FX(lny)fY(y)=fX(lny)(1/y)所以当0