(1 lnx) x的定积分怎么求?积分区间是[1,e]
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 14:08:24
令u=lnx,du=1/xdx当x=√e,u=1/2当x=e^(3/4),u=3/4∫(√e~e^(3/4))1/[x√(lnx*(1-lnx))]dx=∫(1/2~3/4)1/√[u*(1-u)]d
原式=x^2/Inx(1+x^2)^2|(1→2)-∫(1→2)dx^3/Inx2(1+x^2)^2=[x^2-(x^3/2)]/Inx(1x^2)^2|(1→2)=0(由于分母总是等于0,本题考察分
∫[1,e]lnx/x*dx因为dlnx=1/xdx对于∫lnx/xdx=∫lnxdlnx=(ln²x)/2从1到e定积分=(ln²e-ln²1)/2=1/2
∫(e→+∞)1/(x√((lnx)³))dx=∫(e→+∞)(lnx)^(-3/2)d(lnx)=(lnx)^(1-3/2)/(1-3/2)|(e→+∞)=-2/√(lnx)|(e→+∞)
∫lnx/xdx=lnlnx+c
令x=t^2=>可以化成4lnt(上限为2,下限为1)的定积分,lnt的常数为0不定积分为tlnt-t=>4lnt(上限为2,下限为1)的定积分=4(2ln2-2)-4(1ln1-1)=8ln2-4
设y=lnx则x=e^y1=e^0y=0e=e^1y=1dx=e^ydy所以∫ye^ydy[0,1]=ye^y-e^y+C[0,1]=(e-e)-(0-1)=1
原式={(1+lnx)d(lnx)=lnx+[(lnx)^2]/2=1-0+1/2-0=3/2
令u=lnx,x=e^u,dx=e^udu故∫(0,3)dx/[x√(4-lnx)]=∫(0,3)e^u/[e^u·√(4-u)]du=∫(0,3)1/√(4-u)du=-2√(4-u)|(0,3)=
原式=∫dx/lnx-∫dx/ln²x=∫dx/lnx-∫xd(lnx)/ln²x(∵dx=xlnx)=∫dx/lnx-(-x/lnx+∫dx/lnx)+C(第二个积分应用分部积分
当x∈(0,1)时,有ln(1-x)=-Σ1/n*x^n(n从1到+∞)故∫(0到1)lnx*ln(1-x)dx=∫(0到1)lnx*[-Σ1/n*x^n]dx(n从1到+∞)=-Σ∫(0到1)lnx
(1+lnx)/xdx=(1+lnx)dlnx=lnx+(lnx)^2/2定积分等于3/2.
用分部积分法,设u=lnx,v'=1,u'=1/x,v=x,原式=x*lnx-∫(1/x)*xdx=xlnx-x+C.
(lnx))/(x+lnx)开始我试着用凑微分的方式做,无果.然后我观察了下,由于是(x+lnx)^2做分母,所以认为是一个以(x+lnx)为分母的分式,设分子为(Ax+Blnx).求导,待定系数求出