X与Y独立分布,(X Y) sqrt(2)的分布与X相同,证明X服从标准正态分布
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 01:52:42
1.P{XY=-1},有这样的两种情况:1、x=1(0.75),y=-1(0.25);或者2、x=-1(0.25),y=1(0.75).对于1、x=1,y=-1,概率为0.25*0.75=0.1875
设x服从[a,b]的均匀分布f(x)=1/(b-a),x∈[a,b]0,其他设y服从[c,d]的均匀分布f(y)=1/(d-c),y∈[c,d]0,其他所以f(xy)=f(x)f(y)=1/[(b-a
大哥是F分布的定义啊F(5,4)
由于相互独立,EXY=EX*EY=1*2=2泊松分布的期望等于纳姆达=1二项分布的期望等于np=4*0.5=2
EX=-1/3+1/3=0EXY=EX^3=1/3*(-1)^3+1/3*1^3=0Cov(X,Y)=EXY-EXEY=0P(X=1,Y=0)=0P(Y=0)=P(X=0)=1/3P(x=1)*P(Y
两两独立你是证了,但还要一个式子成立主是P(x=xi,y=yi,z=zi)=P(x=xi)P(y=yi)P(z=zi)成立才行但P(X=-1,Y=-1,Z=XY=-1)=0,这是因为X,Y取-1时,Z
分布律:Z01P1/43/4V01P3/41/4U01P3/41/4如果这就是你想要的回答
由于:P(X=0,Y=0)=P(X=1,Y=0)=P(X=0,Y=1)=P(X=1,Y=1)=1/4.P(Z=1)=P(X=1,Y=0)+P(X=0,Y=1)+P(X=1,Y=1)=3/4.P(Z=0
X与Y相互独立,且都服从正态分布N(0,0.5)-->U=X-YEU=EX-EY=0DU=0.5+0.5=1U~N(0,1)E|X-Y|=E|U|为正态分布的一阶绝对中心矩=(2/pi)^(1/
这个用泊松分布可加性来做,很简单X,Y相互独立且分别服从p(λ1),p(λ2)那么Z=X+Yp(λ1+λ2)参考资料里有他的证明
要用到微积分吗?具体公式给下回答:=Σ(3^I*e^(-3)I/I!)(3^(K-I)*e^(-3)I/(K-I)!)=Σ(3^I*3^(K-I)e^(-3)*e^(-3)/I!*(K-I)!)=Σ[
(1)若X~P(),P(),则X+Y~P()证明:利用卷积公式来证明设Z=X+Y则P(Z=m)=P(X+Y=m)=(卷积公式)=(因为X与Y独立时,联合分布=边际分布之积)=(此处忘记写上下标了)==
设二维随机向量(X;Y)的联合分布函数为:F(x,y)=A(B的联合概率密度函数关于X和Y的边缘(x,y)双重积分为1且利用还原
知道x^2与y^2相互独立.D(xy)-D(x)D(y)=E(x^2)E(y)^2+E(y^2)E(x)^2-E(x)^2E(y)^2-E(xy)^2=D(x)E(y)^2+D(y)E(x)^2>=0
解:设随机变量X的密度函数是:f(x),随机变量Y的密度函数是:f(y)因为他们互相独立,所以可以知道他们的联合密度函数:f(x,y)=f(x)*f(y)又f(y,x)=f(y)*f(x)所以f(x,
首先f(x,y)=1/(b-a)(d-c)(a<=x<=b;c<=y<=d) =0elseFz(z)=P(XY<=z)(情况
下面给出利用特征函数所进行的严格证明.证明:记h_{X}(t)为随机变量X的特征函数(注:记号“h_{X}”中的“_”表示“下标”;下文中的记号“^”表示“上标”,用来表示幂运算,如2^n是2的n次方
X~N(1,2)则E(X)=1,Y服从参数为3的泊松分布,则E(Y)=3;E(Y^2)=3^2+3=12;E(X^2)=1;D(xy)=E[(xy)^2]-E^2(xy)=E(x^2y^2)-E^2(