X与Y独立分布,(X Y) sqrt(2)的分布与X相同,证明X服从标准正态分布

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 01:52:42
X与Y独立分布,(X Y) sqrt(2)的分布与X相同,证明X服从标准正态分布
有几条概率论的题目,1.设随机变量X与Y独立同分布,它们取-1,1两个值的概率分别为0.25,0.75,则P{XY=-1

1.P{XY=-1},有这样的两种情况:1、x=1(0.75),y=-1(0.25);或者2、x=-1(0.25),y=1(0.75).对于1、x=1,y=-1,概率为0.25*0.75=0.1875

两个独立随机变量X、Y概率密度已知且都是均匀分布,求Z=XY分布

设x服从[a,b]的均匀分布f(x)=1/(b-a),x∈[a,b]0,其他设y服从[c,d]的均匀分布f(y)=1/(d-c),y∈[c,d]0,其他所以f(xy)=f(x)f(y)=1/[(b-a

设X服从参数为1的泊松分布,Y服从参数为4,0.5的二项分布,且x,y相互独立,求E(XY)

由于相互独立,EXY=EX*EY=1*2=2泊松分布的期望等于纳姆达=1二项分布的期望等于np=4*0.5=2

设X的分布律如下,Y=X^2,试证明X与Y不相关又不相互独立

EX=-1/3+1/3=0EXY=EX^3=1/3*(-1)^3+1/3*1^3=0Cov(X,Y)=EXY-EXEY=0P(X=1,Y=0)=0P(Y=0)=P(X=0)=1/3P(x=1)*P(Y

设随机变量X,Y独立同分布,且P(X=1)=P(X=-1)=1/2,定义Z=XY,证明X,Y,Z两两独立,但不相互独立

两两独立你是证了,但还要一个式子成立主是P(x=xi,y=yi,z=zi)=P(x=xi)P(y=yi)P(z=zi)成立才行但P(X=-1,Y=-1,Z=XY=-1)=0,这是因为X,Y取-1时,Z

2.设随机变量X与Y相互独立且具有同一分布律:

分布律:Z01P1/43/4V01P3/41/4U01P3/41/4如果这就是你想要的回答

设随机变量X与Y相互独立,且服从同一分布,X的分布律为

由于:P(X=0,Y=0)=P(X=1,Y=0)=P(X=0,Y=1)=P(X=1,Y=1)=1/4.P(Z=1)=P(X=1,Y=0)+P(X=0,Y=1)+P(X=1,Y=1)=3/4.P(Z=0

1.设随机变量X Y 相互独立,同分布与N (0,0.5),求E(| X - Y |)

X与Y相互独立,且都服从正态分布N(0,0.5)-->U=X-YEU=EX-EY=0DU=0.5+0.5=1U~N(0,1)E|X-Y|=E|U|为正态分布的一阶绝对中心矩=(2/pi)^(1/

设随机变量X与Y相互独立,且都服从参数为3的泊松分布,证明X+Y仍服从泊松分布,参数为6

这个用泊松分布可加性来做,很简单X,Y相互独立且分别服从p(λ1),p(λ2)那么Z=X+Yp(λ1+λ2)参考资料里有他的证明

设随机变量X与Y相互独立,且都服从参数为3的泊松分布,证明X+Y服从泊松分布,参数为6

要用到微积分吗?具体公式给下回答:=Σ(3^I*e^(-3)I/I!)(3^(K-I)*e^(-3)I/(K-I)!)=Σ(3^I*3^(K-I)e^(-3)*e^(-3)/I!*(K-I)!)=Σ[

如果二独立随机变量X和Y之和X+Y与X和Y服从同一名称的概率分布,则X和Y都服从()

(1)若X~P(),P(),则X+Y~P()证明:利用卷积公式来证明设Z=X+Y则P(Z=m)=P(X+Y=m)=(卷积公式)=(因为X与Y独立时,联合分布=边际分布之积)=(此处忘记写上下标了)==

设X与Y独立,下表给出了二维随机向量(X,Y)的分布、边缘分布中的部分概率值,试将

设二维随机向量(X;Y)的联合分布函数为:F(x,y)=A(B的联合概率密度函数关于X和Y的边缘(x,y)双重积分为1且利用还原

设随机变量X与Y相互独立,证明:D(XY)〉=D(X)D(Y).

知道x^2与y^2相互独立.D(xy)-D(x)D(y)=E(x^2)E(y)^2+E(y^2)E(x)^2-E(x)^2E(y)^2-E(xy)^2=D(x)E(y)^2+D(y)E(x)^2>=0

随机变量X与Y互相独立,且服从同一分布,求P{X≤Y}

解:设随机变量X的密度函数是:f(x),随机变量Y的密度函数是:f(y)因为他们互相独立,所以可以知道他们的联合密度函数:f(x,y)=f(x)*f(y)又f(y,x)=f(y)*f(x)所以f(x,

两个独立随机变量X∈[a,b] Y∈[c,d].X、Y概率密度已知且都是均匀分布,求Z=XY分布密度

首先f(x,y)=1/(b-a)(d-c)(a<=x<=b;c<=y<=d)    =0elseFz(z)=P(XY<=z)(情况

x、y独立同分布随机变量,x+y与x-y独立,Ex=0,Dx=1,证明x~N(0,1)

下面给出利用特征函数所进行的严格证明.证明:记h_{X}(t)为随机变量X的特征函数(注:记号“h_{X}”中的“_”表示“下标”;下文中的记号“^”表示“上标”,用来表示幂运算,如2^n是2的n次方

设X~N(1,2),Y服从参数为3的泊松分布,且X与Y独立,求D(XY)

X~N(1,2)则E(X)=1,Y服从参数为3的泊松分布,则E(Y)=3;E(Y^2)=3^2+3=12;E(X^2)=1;D(xy)=E[(xy)^2]-E^2(xy)=E(x^2y^2)-E^2(