x²cosx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 20:01:53
由(sinx+cosx)^2=1/25得2sinxcosx=-24/25,(sinx-cosx)^2=48/25得sinx-cosx=-4√3/5,故sin^3x-cos^3x=(sinx-cosx)
积分[e^x/2*(cosx-sinx)]/√cosxdx=积分2[1/2e^x/2*(cosx)^(1/2)-1/2e^x/2*sinx(cosx)^(-1/2)]dx=积分[2e^x/2*(cos
∵∫e^(-x)cosxdx=e^(-x)sinx+∫e^(-x)sinxdx(应用分部积分法)==>∫e^(-x)cosxdx=e^(-x)sinx-e^(-x)cosx-∫e^(-x)cosxdx
利用分部积分法,∫e^x*cosxdx=∫cosxd(e^x)=e^xcosx-∫e^xd(cosx)=e^xcosx+∫e^x*sinxdx=e^xcosx+∫sinxd(e^x)=e^xcosx+
分部积分法∫xcosxdx=∫xdsinx=xsinx-∫sinxdx=xsinx+cosx+C
=∫x(secx)^2dx=∫xdtanx=xtanx-∫tanxdx=xtanx-∫sinx/cosxdx=xtanx+∫dcosx/cosx=xtanx+ln|cosx|+C
左边=sin²x/(sinx-cosx)-(sinx+cosx)/(sin²x/cos²x-1)=sin²x(sinx+cosx)/(sinx-cosx)(si
被积函数有原函数但是不能用初等函数表示就像楼上的人说的一样但是可以用无穷级数展开cosx=1-x^2/2!+x^4/4!-...+{[(-1)^n]x^(2n)}/(2n)!f'(x)=cosx/x=
∫(1/x²+1)dx=-1/x+x+C选A
x-xcosx=x(1-cosx),1-cosx与x^2/2等价,所以,lim(x→0)(x-xcosx)/(x-sinx)=lim(x→0)(1/2×x^3)/(x-sinx)使用洛必达法则=lim
(1+cosx)/(1-cosx)+(1-cosx)/(1+cosx)通分=((1+cosx)^2+(1-cosx)^2)/1-cos^2(x)=2*(1+cos^2(x))/sin^2(x)因为1=
y=(sinx/x)^(cosx/1-cosx)lny=(cosx(lnsinx-lnx)/(1-cosx)limlny=lim(cosx(lnsinx-lnx)/(1-cosx)=lim(lnsin
∫(x^2*cosx)dx=x^2*sinx-2∫xsinxdx=x^2*sinx+2xcosx-2∫cosxdx=x^2*sinx+2xcosx-2sinx+C(C为任意常数)
y=(cosx)^xlny=xln(cosx)两边同时求导得y'/y=ln(cosx)+x*(-sinx)/cosxy'=(cosx)^x*[ln(cosx)-x*tanx]
(cosx)'=[sin(π/2-x)]‘=cos(π/2-x)*(π/2-x)'=sinx*(-1)=-sinx
sin^2x/(sinx-cosx)-(sinx+cosx)/(tan^2x-1)=sin^2x/(sinx-cosx)-(sinx+cosx)/[(tanx+1)(tanx-1)]=sin^2x/(
画一个单位园作两个角:一个:x,一个-x可以看出:cosx=OA/R //: 由余弦函数的定义而
x→-∞lim(x-cosx)/x=lim1-cosx/x=lim1-limcosx/x=1-limcosx/x因为cosx为有界量1/x趋于0,为无穷小量有界量乘以无穷小量为无穷小量故,=1-0=1