x^2-3x 1=0,求2x^3-3x^2-7x 2004
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 01:11:18
利用两根和、两根积公式得x1+x2=-2/3,x1x2=-6/3=-2x1*x1+x1x2+x2*x2=x1*x1+2x1x2+x2*x2-x1x2=(x1+x2)^2-x1x2=(-2/3)^2+2
x1+x2=2所以x1+2x2=2+x2=3-√2x2=1-√2则x1=2-x2=1+√2a=x1x2=-1x²-2x-1=0所以x1²-2x1-1=0x1²=2x1+1
韦达定理x1+x2=-3/2,x1x2=-1/2
x1+x2=m=2方程x^-mx-3=0变为x^2-2x-3=0(x+1)(x-3)=0x=-1或3x1,x2的值为-1或3
解x1.x2是方程的解由韦达定理得:x1+x2=-6,x1x2=3∴x1²+x2²=(x1+x2)²-2x1x2=(-6)²-2×3=36-6=30x2/x1+
根据韦达定理有X1+X2=-b/a=-2/3,X1*X2=c/a=-3/3=-1①x2/x1+x1/x2=(x2²+x1²)/(x1x2)=【(x1+x2)²-2x1x2
方程4x^2-7x-3=0的两根为x1,x2,所以x1+x2=7/4,x1x2=-3/4,x2/(x1+1)+x1/(x2+1)=(x1^2+x2^2+x1+x2)/(x1x2+x1+x2+1)x1^
方程3x²-4x=-1可化为:3x²-4x+1=0由根与系数的关系,有x1+x2=4/3,x1x2=1/3∴x2/x1+x1/x2=(x1²+x2²)/(x1x
根据韦达定理:x1+x2=-b/ax1*x2=c/a代入:x1+x2=-5/3x1*x2=-2/3即:x1+x2+x1*x2=(-5/3)+(-2/3)=-7/3
x1^2-4x1+2=0x1^2-3x1=x1-2x1+x2-2=4-2=2
(2x-1)(x-3)=0x1=1/2x2=3
根据韦达定理x1+x2=-3x1=-3-x2x1*x2=1(x1-x2)^1=x1^2+x2^2-2x1x2=(x1+x2)^2-4x1x2=9-4=5x1-x2=±根号5x1^2+3x2+2=x1*
因为3x²-4x-2=0所以知X1+X2=-B/A=-(-4)/3=4/3X1X2=C/A=-2/3x1²+x2²=X1²+X2²+2X1X2-2X1
已知x1是方程的解,则2x1²-2x1-5=0===>x1²-x1=5/2=2.5又,x1,x2是方程的两个解,则:x1+x2=1,x1x2=-5/2x1³+3x1
x²-3x-2=0x1+x2=3,x1x2=-2x²=3x+2x1²=3x1+2,x2²=3x2+2x1³-x2³=x1*x1²-
x1.x2是方程2x²-x-3=0的两实根∴x1+x2=1/2x1x2=-3/2∴x1+x2+x1*x2=1/2-3/2=-1
设方程2X²-3X+1=0的两个根为X1X2则X1+X2=-(-3)/2=3/2X1*X2=1/2X1²+X2²=(X1+X2)²-2*X1*X2=(3/2)&
对于一元二次方程ax2+bx+c=0,若存在根x1、x2,则x1+x2=-b/a,x1*x2=c/a;对于本题,x1+x2=4/3,x1*x2=-2/3,所以(1)=(x1+x2)^2-2x1*x2=
f(x)在x=1处左右导数存在再问:左右都存在?
-2或5又二分之一再问:过程?再答:2X²-3X-1=0(2X+1)(X-1)=0X1=-1/2,X2=1或者X1=1,X2=-1/2带到后面的式子就可以了