x^2 y^2=2ax曲面

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:05:39
x^2 y^2=2ax曲面
matlab画三维网格曲面图Z=(X^2)/(4^2)-(Y^2)/(5^2)

[X,Y]=meshgrid(linspace(-10,10),linspace(-10,10));Z=(X.^2)/(4^2)-(Y.^2)/(5^2);mesh(X,Y,Z)

曲面x^2+y^2+z^2=1与曲面y^2=2x的交线在xoz平面的投影曲线是( )

曲面x^2+y^2+z^2=1与曲面y^2=2x的交线在xoz平面的投影曲线是(圆)

曲面z=x^2+y^2 被平面z=1 z=2所截曲面面积

-(pi*(5*5^(1/2)-27))/6另附Matlab程序段:%此程序为计算空间中给定的曲面r(u,v)的面积clearall;clc;symsuv;%{设置曲面的向量形式r(u,v)=分量函数

计算曲面积分闭合曲面I=ff(x^2+y^2)dS.其中曲面为球面x^2+y^2+z^2=2(x+y+z)

x²+y²+z²=2x+2y+2z(x-1)²+(y-1)²+(z-1)²=3令x=1+u,y=1+v,z=1+w==>Σ':u²

曲面f(x,y,z)关于平面Ax+By+Cz+D=0对称的曲面方程是什么?

=(x,y,z)与rr=(xx,yy,zz)关于平面Ax+By+Cz+D=0对称,有r=rr+2dn=(xx,yy,zz)+2(A*xx+B*yy+C*zz+D)/sqrt(A^2+B^2+C^2)(

求锥面z=根号(x^2+y^2)被圆柱面x^2+y^2=2x割下部分的曲面面积(是曲面积分),

对于z=f(x,y),曲面面积为A=∫∫DdA=∫∫D√[1+(əf/əx)²+(əf/əy)²]dxdy锥面z=√(x²+y&#

如何用Mathematica作空间曲面方程:(x-b)^2+y^2=b^2

Manipulate[Plot3D[(x-b)^2+y^2==b^2,{x,-100,100},{y,-100,100}],{b,-100,100}]再问:原方程是个柱面,用Plot3D好像不行啊Ma

计算曲面积分 I=∫∫(S+) (x^3)dydz+(z)dzdx+(y)dxdy 其中s+为曲面x^2+y^2=4,与

用高斯公式:P=x^3,Q=z,R=y,积分区域为圆柱:x^2+y^2=4,与平面z=0,Z=1I=∫∫∫3x^2dxdydz(下面用柱面坐标)=3∫(0,2π)(cosθ)^2dθ∫(0,2)r^3

计算XOY面上的圆周X^2+Y^2=aX围成的闭区域为底,以曲面Z=X^2+Y^2为顶的曲顶柱体的体积

XOY面上的圆周X^2+Y^2=aX围成的闭区域是一个圆,如果不加附件条件的话,加上Z坐标,空间图形就是一个圆柱.现在加上一个条件Z=X^2+Y^2,则我们可得Z=aX,则空间图形在X0Z平面上是一条

曲面2z=x^2+y^2被柱面(x^2+y^2)^2=x^2-y^2所截下部分的曲面

柱面(x^2+y^2)^2=x^2-y^2化成极坐标方程是r^2=cos2θ.即r=√cos2θ.θ的范围是[-π/4,π/4]∪[3π/4,5π/4]S=∫∫dS=∫∫√[1+(z'x)^2+(z'

高等数学旋转曲面问题:(x/2)=y=-(z-1)绕x轴旋转,求此旋转曲面.

设A(x1,y1,z1)为x/2=y=-(z-1)上的任意点,其关于x轴的对称点为A'(x,y,z).易知:x=x1,y1=(x1)/2,z1=1-(x1)/2,y+z=y1+z1→2(y+z)=x-

锥面z^2=x^2+y^2被圆柱面x^2+y^2=2ax所截部分的曲面面积

∵锥面z²=x²+y²被圆柱面x²+y²=2ax所截∴所截部分的曲面面积在xy平面上的投影是D:x²+y²=2ax∵αz/αx=x

曲面x^2-2y^2+z=2被xoy平面所截得的曲线绕y轴旋转一周所成的旋转曲面方程

联立方程x^2-2y^2+z=2与z=0,可解得xoy面上曲线方程x^2-2y^2=2.接着令x=(+或-)(x^2+z^2)^(1/2),然后解得方程x^2+z^2-2y^2=2

如何求由曲面z=√x^2+y^2,x^2+y^2=2ax与平面z=0围成的立体的体积,

它是由圆锥面、圆柱面和XOY平面围成.用极坐标做较方便.z=√x^2+y^2变成z=ρ,,x^2+y^2=2ax变成ρ=2acosθ,积分区域D:0

曲面方程指出下列方程是什么曲面,若是旋转曲面,指出他们由什么曲面旋转而成1.(x^2)/4+(y^2)/9+(z^2)/

1.椭球面.关于原点中心对称.系旋转曲面.由YOZ坐标平面的椭圆(y^2)/9+(z^2)/4=1绕Y轴旋转180度形成;或者由XOY坐标平面的椭圆(x^2)/4+(y^2)/9=1绕Y轴旋转180度

求y^2=2x绕x轴旋转的曲面方程

求y^2=2x绕x轴旋转的曲面方程x不变,把y²换为y²+z²就是y²+z²=2x

高数曲面和积分问题平面H:4x+8y+z=k是曲面S:z=9-x^2-4y^2的切平面求k计算曲面S与xy平面包围的部分

记F(x,y,z)=x^2+4y^2+z-9则法向量是(Fx.Fy,Fz)=(2x,8y,1)根据平面H:4x+8y+z=k的法向量是(4,8,1)求出(x,y,z)=(2,1,1)代入H中得k=17

求在空间中,方程x^2+y^2-2y=0表示的曲面

x^2+y^2-2y+1=1x^2+(y-1)^2=1平面里表示圆心在(0.1),半径为1的圆空间中,由于Z坐标没限制,所以表示以这个圆为截面的圆柱形的侧面

求曲面x^2+y^2=2ax(a>0),z=αx,z=βx(α,β为常数,且α>β>0)所围成立体的体积.

所围成立体的体积=∫dθ∫(β-α)r²cosθdr(作柱面坐标变换)=(β-α)∫cosθdθ∫r²dr=(β-α)∫[(2acosθ)³/3]cosθdθ=[(8a&