xy dxdy, D = {0 ≤ y ≤ x, 0 ≤ x ≤ 1}
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 12:56:18
作出区域D的图象,联系指数函数y=ax的图象,由x+y-11=03x-y+3=0得到点C(2,9),当图象经过区域的边界点C(2,9)时,a可以取到最大值3,而显然只要a大于1,图象必然经过区域内的点
用极坐标,x²+y²=2y的极坐标方程为:r=2sinθ∫∫xydxdy=∫∫r³cosθsinθdrdθ=∫[π/4→π/2]cosθsinθdθ∫[0→2sinθ]r
观察图像可确定:原积分变为§(0,2)dy§(y,2y)xydx=§(0,2)ydy[x^2/2|(y,2y)]=§(0,2)[3y^3/2]dy=(3y^4/8)|(0,2)=6
你把区域弄错了,y=0是x轴,你看成y轴了先y后x的次序:∫(下界0上界1)dx∫(下界0上界√x)xydy+∫(下界1上界2)dx∫(下界0上界2-x)xydy先x后y的次序:∫(下界0上界1)dy
再问:X的边缘概率密度函数具体求导过程,谢谢再答: 就是对联合分布函数的y进行积分即可
原式=∫dy∫(1+x+2y)dx=4∫(1+y)dy=4×8=32.
你这是c语言X++;变量X的值加1Y++;变量Y的值加1printf();库函数,实现格式化输入的功能,第一个参数是字符串,引号内除了%d其余部分原样输出,%d使用后面的变量x,y的值替换;%d代表输
∵在区域D={(x,y)|x²+y²≤x,y≥0}中,1-x²-y²≥0∴∫∫|1-x²-y²|dxdy=∫∫(1-x²-y
x=rcosθy=rsinθ∫∫(D)arctany/xdxdy=∫∫(D')arctan(sinθ/cosθ)rdrdθ其中D':1
原式=∫(-π/2,π/2)dθ∫(0,1)[(1+r²sinθcosθ)/(1+r²)]rdr(极坐标变换)=1/2∫(-π/2,π/2)dθ∫(0,1)[(1+rsinθcos
x+y=1的极坐标方程为:r=1x+y=2x的极坐标方程为:r=2rcosθ,即r=2cosθ2cosθ=1,则:cosθ=1/2,θ=π/3请自己画图因此两曲线所围区域可分为两部分,第一部分θ:0-
∫∫Df(x,y)dxdy=0∫∫Dxyf(x,y)dxdy=1,不好意思!这个我看不懂!但我知道这类题一般用积分中值定理或泰勒公式!还有那个积分绝对值不等式!再问:那个D在∫∫下面表示区域面积~~没
看图片,不懂再问.再问:谢谢,我先看看
X区域:D:x=2,y=1,y=x==>1≤x≤2,1≤y≤x∫∫_Dxydxdy=∫(1→2)dx∫(1→x)xydy=∫(1→2)[xy²/2]:(1→x)dx=∫(1→2)(x
y=x²+1 和y=2x的交点是(1,2)