xlnx ylny>(x y)ln
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:11:02
方法一(微分法)d(y/x)=d(ln(xy))(xdy-ydx)/x²=1/xy*d(xy)即(xdy-ydx)/x²=(ydx+xdy)/xy∴dy/dx=(xy+y²
两边求导(y'x-y)/x^2=(y+xy')/xyxy+x^2y'=xyy'+y^2y'=(xy-y^2)/(xy+x^2)
z'x=(-y/x^2)/(y/x)=-1/xz'y=(1/x)/(y/x)=1/ydz=z'xdx+z'ydyu=ln(x^2+y^2+z^2)u'x=2x/(x^2+y^2+z^2)u'y=2y/
两边对x求导得y+xy'=(1+y')/(x+y)y(x+y)+x(x+y)y'=1+y'y'[x(x+y)-1]=1-y(x+y)y'=[1-y(x+y)]/[x(x+y)-1]dy=[1-y(x+
δz/δx=1/(xy+x/y)*(y+1/y)=(y²+1)/(xy²+x)=1/xδ^2z/δxδy=δ(δz/δx)/δy=0
dz=d(xyln(xy))=xyd(ln(xy))+ln(xy)d(xy)=xyd(xy)/(xy)+ln(xy)d(xy)=d(xy)+ln(xy)d(xy)=(1+ln(xy))d(xy)=(1
设Y=y'降阶:Y'=(Y/x)ln(Y/x)这就是一个一阶齐次方程.设Y/x=u,所以Y=ux,Y'=u+x(du/dx),代回原方程,解得:lnu=C1x+1Y=xe^(C1x+1)所以y=[(C
运用函数连续性,化成一元函数求极限x→0,y→2lim[ln(x+e^xy)/x]=x→0lim[ln(x+e^(2x)]/x【0/0型】=x→0lim[ln(1+(x+e^(2x)-1)]/x=x→
答案是1/e当x=1,y=ln(0*1+e)=lne=1所以(0,1)在曲线上.y=ln(xy+e)y'=1/(xy+e)*(y+x*y')y'=y/(xy+e)+x/(xy+e)*y'y'*[1-x
直接两边对x求导,得1/y*(-1/y2)*dy/dx=1/xy*(y+xdy/dx)下面会了吧
这不是微分方程.你漏掉导数符号了或者漏掉微分符号d了.再问:没有,篇子上原题,一模一样。再答:你有没有看清楚,其中是不是有个y有个小小的一撇y'这真的不是微分方程,微分方程要含有导数或者偏导或者等价的
应该是没错,我也算到这个,如果只是把xy换成e^(x/y)或者进行其他恒等变换的话答案其实是一样的,表达形式不一样而已,你可以试着根据x/y=ln(xy)把标准答案变形一下,看看能不能得到这个结果.一
e^(lnx+lny)=e^lnx*e^lny=x*ye^lnxy=xy所以e^(lnx+lny)=e^lnxy所以lnx+lny=lnxy
先求导等式两边同时对x求导得y+xy'+y'/y=0则y'=-y^2/(xy+1)当x=1,y=1时,y'=-1/2故切线方程为y-1=-1/2(x-1)即x+2y-3=0
u=ln(xy+z)du=d[ln(xy+z)]/dx*dx+d[ln(xy+z)]/dy*dy+d[ln(xy+z)]/dz*dz=y/(xy+z)*dx+x/(xy+z)*dy+1/(xy+z)*
x=yln(xy),等式两端对x求导,1=dy/dx+y[1/ln(xy)][y+x(dy/dx)]=dy/dx+y/ln(xy)+xdy/dx,整理得(dy/dx)(1+x)=1-y/ln(xy),
ln+log10没有exp
两边求导得y'·e^y+(y+xy')/(xy)+e^(-x)=0
e^(y+ln|y|)=e^(x+ln|x|+C)e^y*e^ln|y|=e^x*e^ln|x|*e^C|y|e^y=|x|e^x*e^Cye^y=±e^C*xe^xye^y=C*xe^x(这里的C相