X=ln√(1 t^2)y=arctan(1 t^2)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:50:50
分子分母同乘以√x^2+1-x再问:哪里来的分子分母?我问的是第一步是怎么来的?再答:把x+√x^2+1看成(x+√x^2+1)/1,分母看成1
y'=[ln(x+√(1+x²))]'=1/(x+√(1+x²))*[x+√(1+x²)]'=1/(x+√(1+x²))*[1+2x/2√(1+x²)
chainruley=f(g(x))y'=g'(x)f'(g(x))
复合函数f(x)=lnxg(x)=ln[ln(x)]r(x)=ln{lnln(x)]}r'(x)=[1/lnln(x)]g'(x)=[1/lnln(x)][1/ln(x)]f'(x)=[1/lnln(
dy/dx=[1-1/(1+t²)]/[2t/(1+t²)]=t/2d²y/dx²=(1/2)*dt/dx=(1/2)/(dx/dt)=(1/2)/[2t/(1
y=ln(1+t)t=e^y-1x=e^(2y)-e^y两边同时对x求导得dy/dx=1/(2e^(2y)-e^y)=1/(2(1+t)^2-1+t)=1/(2t^2+3t+1)
Y=[LN(1-X)]^2?Y'=2LN|1-X|/(1-X)(-1)=-2LN|1-X|/(1-X)
明显你是对的.答案是哪里来的,明显不对.
2x/(1+x^2)
y'=ln(2x^-1)'=(x/2)*2*(-1)/x^2=-1/x
y=ln(x+√(1+x^2))y'=1/[x+√(1+x^2)]*[x+√(1+x^2)]'又∵[x+√(1+x^2)]'=1+(1/2)(1+x²)^(-1/2)*2x=1-x*(1+x
x≤0时√x^2=-x所以y=0x>0时√x^2=x所以y=ln(2x+1)
先分别求出dx/dt和dy/dt,假设A=dx/dt,B=dy/dt然后用B/A得出dy/dx设C=B/A=dy/dxC中只含有t.因此,d^2y/dx^2=C/dt乘以dx/dt的倒数(dt/dx)
分别算出dx,dy,然后相除就行详见参考资料
x=tany+ln(cosy^2),dy/dx=(dx/dy)^-1=(tany-1)^-2,y"=d(dy/dx)/dy*dy/dx=-2secy^2/(tany-1)^5