x=a(t–sint)与y=a(1-cost)对y=2a的体积

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 15:13:18
x=a(t–sint)与y=a(1-cost)对y=2a的体积
求解一道高数题 ,求由摆线x=a(t - sint),y=a(1 -cost)的一拱(0≤t≤2∏) 与横轴所围图形的面

楼上的思路基本正确,积分时要将y,x转换为用t表示的函数.我补充一下过程吧:S=∫|y|dx=∫a(1-cost)dx(∵y=a(1-cost)≥0,其中a>0)又∵x=a(t-sint)∴dx=a(

x=a(t-sint),y=a(1-cost),请构造关于x,y的二元函数f(x,y),使得f(x,y)

4a[1-cos(t/2)]=8a[sin(t/4)]^21-cost=2[sin(t/2)]^2sint=2sin(t/2)cos(t/2)tan(t/2)=(1-cost)/sintcot(t/2

求摆线x=a(t-sint),y=a(1-cost)的一拱与横轴围成的图形面积

利用参数方程求面积的公式解定积分 过程如下图: 

求摆线的参数方程x=a(t-sint) 和 y=a(1-cost)所确定的函数y=y(x)的

dx/dt=a(1-cost)dy/dt=asinty'=dy/dx=(dy/dt)/(dx/dt)=sint/(1-cost)dy'/dt=[cost(1-cost)-sint(sint)]/(1-

求星形线x=a(sint)^3,y=a(sint)^3,(0小于等于t小于等于2π)所围成图形的面积

由对称性,S=4∫(0→a)ydx=4∫(π/2→0)a(sint)^3d[a(cost)^3]=12a^2×∫(0→π/2)(sint)^4×(cost)^2dt=12a^2×∫(0→π/2)[(s

高数定积分几何应用求摆线x=a(t-sint),y=a(1-cost)的一拱(0≤t≤2π)与y=0绕y轴(其实等价于绕

摆线属于常用平面曲线,其图形可以先画出来,整个区域是一个曲边梯形,底边是区间[0,2πa],曲边是摆线,所以图形的面积是一个定积分:S=∫(0→2πa)ydx,把x=a(t-sint),y=a(1-c

求曲线①x=a(t-sint) ②y=a(1-cost) 在T=π/2处的切线方程和法线方程

首先求导数y'=1/(2根号x)所以切线斜率为1/2根号4=1/4故法线斜率为-4所以切线方程为y-2=1/4(x-4)法线方程为:y-2=-4(x-4)你自己在化简一下就行了

x(t)=t-sint y(t)=1-cost,想建立x与y的方程,

t=arccos(1-y)x=arccos(1-y)-sin[arccos(1-y)]【sin(arccosx)=√(1-x²)】=arccos(1-y)-√[1-(1-y)²]=

高等数学摆线求摆线x=a(t - sint),y=a(1 -cost)的一拱(0≤t≤2∏) 的长度

直接用公式吧:这是参数方程先各自求个导:x'(t)=a(1-cost)y'(t)=asintL=积分:(0,2*pi)[x'^2(t)+y'^2(t)]^(1/2)dt=积分:(0,2pi)(2a^2

【高数】求由摆线x=a(t - sint),y=a(1 -cost)的一拱与x轴所围平面区域绕x轴旋转以后所得旋转体的表

小的不才,可以给你一个思路,任何图形绕X轴转一周的表面积均可用以下公式求出(我自创的哦,呵呵)S=∫f(x)*√1+[f'()]^2*dx其中∫为积分符号,√为根号.根据题意,f'(x)=(1-cos

1.由摆线x=a(t - sint),y=a(1 -cost)的一拱(0≤t≤2∏) 与横轴所围图形的面积

2由摆线x=a(t-sint),y=a(1-cost)的一拱(0≤t≤2∏)与y=0所围图形的面积=∫(0,2πa)ydx=∫(0,2π)a(1-cost)d[a(t-sint)]=a^2∫(0,2π

旋轮线 公式旋轮线 x=a(t-sint) y=a(1-cost)是如何推导出来的?

在极坐标系中平面螺旋线方程为r=a*t+k,t为M点参数,表示OM与X轴夹角,a、k为常数.联系到平面直角坐标系,我们有r^2=x^2+y^2通过x=a(t-sint)y=a(1-cost)这组关系,

求摆线x=a(t-sint),y=a(1-cost)的一拱(0≤t≤2π)与y=0绕x轴所转成图形的体积.

摆线属于常用平面曲线,其图形可以先画出来,整个区域是一个曲边梯形,底边是区间[0,2πa],曲边是摆线,所以图形的面积是一个定积分:S=∫(0→2πa)ydx,把x=a(t-sint),y=a(1-c

已知函数f(t)=-sin^2t+sint+a

1、0=-sin^2t+sint+a0=-(sin²t-sint+1/4-1/4-a)0=-[(sint-1/2)²-(1+4a)/4]0=-(sint-1/2)²+(1

已知参数方程比如x=a(t-sint),y=a(1-cost) 如何转换成一般式呢?

sint=t-x/acost=1-y/asint^2+cost^2=1所以(at-x)^2+(a-y)^2=a^2

求∫∫y^2dσ,其中D是由摆线x=a(t-sint),y=a(1-cost)(0≤t≤2π)的一拱与x轴所围成

先积y,∫∫y²dσ=∫[0---->2πa]dx∫[0--->y(x)]y²dy=(1/3)∫[0---->2πa]y³(x)dx换元:令x=a(t-sint),则y(

参数方程求导 x=a(t-sint) y=a(1-cost) 求dy/dx 各种不会 求解决

∵x=a(t-sint)∴dx=d[a(t-sint)]=(a-cost)dt∴y=a(1-cost)∴dy=d[a(1-cost)]=asintdt∴dy/dx=(asint)/(a-cost)再问

求由摆线x=a(t-sint),y=a(1-cost)的一拱(0≦t≦2π)与x轴所围成的图形面积

符号不好输入,直接上图~再问:嗯,那个图是怎么画出来的?我的参考资料有这个图,但我不知道怎么画出来,能给我说说吗?这个图形还有个圆是怎么回事?辛苦了,谢谢再答:这个不是准确的图啦~~只是一个示意图。大

求由摆线x=a(t-sint),y=a(1-cost)的一拱(0≦t≦2ㄇ)与x轴所围成的图形的.面积

S=∫|y|dx=∫a(1-cost)dx(∵y=a(1-cost)≥0,其中a>0)又∵x=a(t-sint)∴dx=a(1-cost)dtS=∫(0,2π)a²(1-cost)²