x 2y x*2 y*2 x,y趋于0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 14:26:19
答案:1/21-cos根号(x^2+y^2)等价于(x^2+y^2)/2所以除以x^2+y^2等于1/2和x,y没关系
令y=kx代入即可知,极限与k有关,因此极限不存在
因为归一性,在x,y取值范围内的积分(或者级数)必为1,因此无穷大的时候分布函数必须趋于0,不然积分(或者级数)不会收敛
lim((1-√(x^2y+1))/x^3y^2)sin(xy),有理化1-√(x^2y+1)):=lim(-x^2y)/(1+√(x^2y+1))/x^3y^2)sin(xy)=lim(-sin(x
当x趋近2,y趋近0时,xy仍然趋近0,所以sin(xy)和xy是等价无穷小,乘除运算中可以相互代换原式=xy/y=x=2当x趋近2,y趋近0时
令y=x^3-x^2,带入原式,则当x,y趋于0时,原式趋于-1,再令y=x^2,带入原式,则当x,y趋于0时,原式趋于0,所以原式的极限不存在
[1-cos(x^2+y^2)]~0.5(x^2+y^2)^2e^xy*(x^2+y^2)~(x^2+y^2)所以答案是0
题目抄的有点问题.按照x^3y^2在分母来计算.分子1-根号(x^2+1)=-x^2/(1+根号(x^2+1))等价于-x^2/2.sin(xy)等价于xy,代入得原极限=lim-x^2*(xy)/(
第一题极限等于1第二题极限为1/2第三题为1第一题方法x->0y->1直接代入即可第二题方法1-cos根号(x^2+y^2)等价于(x^2+y^2)/2所以除以x^2+y^2后等于1/2和x,y没关系
直观上,条件说明f(x,y)在原点和xy很接近.但是原点只是xy的鞍点,于是原点也不是f(x,y)的极值点.严格写下来是这样:∵lim{(x,y)→(0,0)}(f(x,y)-xy)/(x²
极限不存在.上下同时除以x^2,令t=y/x,则原式=t/(1+t^2).由于t可以是任意非负数,所以极限不存在.
答案:1方法x--->0y---->1直接代入即可
y'+(1-x)/x*y=e^2∫(1-x)/xdx=∫(1/x-1)dx=lnx-x∫e^2e^(lnx-x)dx=e^2∫xe^(-x)dx=e^2[-xe^(-x)+∫e^(-x)dx]=e^2
lim[x=y,x-->0](xy)^2/(x^2+y^2)^2=lim[x=y,x-->0]x^4/(4x^4)=1/4lim[y=2x,x-->0](xy)^2/(x^2+y^2)^2=lim[y
不一定.根据二元函数极限的定义知,是以任意方式趋于某个点时极限存在,则二元函数的极限存在,若y=x^2,x趋于0,f(x,y)=A,它是以y=x^2的路径趋于(0,0)时,极限为A.但不能说明任意方式
∵lim(x->0)y=lim(x->0)[xe^(1/x²)]=lim(x->0)[e^(1/x²)/(1/x)]=lim(x->0)[e^(1/x²)(-2/x
如图,最后一步:无穷小量×有界量 还是无穷小量
令y=kx则limsin(y×x^2+y^4)/(x^2+y^2)=limsin[kx^3+(kx)^4]/[(1+k^2)*x^2]分子用等价无穷小替换=lim[k+(k^4)*x]*(x^3)/[
不能用洛必达法则因为lim(x趋于0)xlnx=limlnx/(1/x)(洛必达)=lim(1/x)/(-1/x^2)=lim(-x)=0所以也就是说lim(x趋于0)(2xlnx+2e)=2e而不是