f(x)=x²1求f(x1)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:33:03
^x=[1+f(x)]/[1-f(x)]---->f(x)=[1-4^x]/[1+4^x]设a=4^(x1),b=4^(x2),显然a>0,b>0.f(x1)+f(x2)=(1-a)/(1+a)+(1-b)/(1+b)=(2-2ab)/[(
例1的意思就是说,若x1,就把X用X-1替换,重复以上步骤.比如说你的3.5>1,于是再把X=2.5代进去,2.5还>1,于是再代1.5进去,1.5>1,再代0.5进去,0.5小于等于1,于是f(3.5)=0.5,其实就是取X的小数部分例2
由f(x1+x2)=f(x1)f(x2),得该函数类型为f(x)=b*a∧x(指数型函数)f(x)'=b(a∧x)㏑a所以f'(0)=blna=2所以a=e∧n,b=2/n所以f(x)=(2/n)e∧(nx)(n!=0)f'(x)=2e∧x
由4^x=(1+f(x))/(1-f(x))可得f(x)=[4^x-1]/[4^x+1],再由f(x1)+f(x2)=1,带入化简得:4^(x1+x2)-3=4^x1+4^x2,此时利用基本不等式a^2+b^2≥2ab(等号在a=b时取得)
条件即为当x1>x2时,f(x1)>f(x2)此为增函数,当x=1,需有f(1)=3+3a>=0-->a>=-1(3-a)x+4a为增函数需有:3-a>0-->a
当x2=0时f(x1)=f(x1)+f(0)+1f(0)=-1当x1=-x2时f(0)=f(-x2)+f(x2)+1-f(-x2)-1=f(x2)+1所以f(x)+1是奇函数
根据第一个条件可以求得f(x)=(4^x-1)/(4^x+1)(4^x表示4的x次方)代入第二个条件,f(x1)+f(x2)=1,整理出来一个包含(4^x1+4^x2)和4^(x1+x2)的一个等式.4^(x1+x2)=3+(4^x1+4^
解出f(x)=[4^x-1/4^x+1]求导的其导数=1+{2*4^x*(以4为底e的对数)/(4^x+1)^2}恒大于零则其在R上递增f[x1]+f[x2]=1可化简为4^(x1+x2)=3+(4^x1+4^x2)≥3+2(根号下4^(x
因为4^x=(1+f(x))/(1-f(x)),所以f(x)=(4^x-1)/(4^x+1)且(4^x1-1)/(4^x1+1)+(4^x2-1)/(4^x2+1)=1所以:2(4^(x1+x2)-1)/[4^(x1+x2)+4^x1+4^
1)令y=-x则f(x)+f(-x)=f(0)令x=y=0则f(0)+f(0)=f(0)所以f(0)=0即f(x)+f(-x)=0所以f(x)是奇函数2)设x1>x2则x1-x2>0则f(x1-x2)<0f(x1-x2)=
令x1=x2,f(0)=0,再令x1=0,f(-x2)=-f(x2),由定义域关于原点对称所以为奇函数.
不等式左边=[2^x1+2^x2]/2>2根号(2^x1*2^x2)/2=根号2^(x1+x2){因为x1不等于x2,所以等号取不到}不等式右边=2^[(x1+x2)/2]=根号2^(x1+x2)得证
∵对于区间A上的任意x1,x2,不等式(x1-x2)[f(x1)-f(x2)]>0恒成立∴x1≠x2,[f(x1)-f(x2)]/(x1-x2)>0∴f(x1)-f(x2)和x1-x2的符号相同∴函数f(x)=1-|x+1|在定义域上是增函
解出f(x)=[4^x-1/4^x+1]求导的其导数=1+{2*4^x*(以4为底e的对数)/(4^x+1)^2}恒大于零则其在R上递增f[x1]+f[x2]=1可化简为4^(x1+x2)=3+(4^x1+4^x2)≥3+2(根号下4^(x
可以这样:设两个变量,令x1=x(1),x2=x(2),后面的和你上面写的一样.再问:不行啊~~而且我想求的是f=x(1)^2+x(2)diff(f,x(1))diff(f,x(2))不是f=x1^2+x2diff(f,x1)diff(f,
/>在x=0处,左极限=1,右极限=-1左极限≠右极限所以在x=0处不连续所以在x=0处不可导谢谢
inputx,yifx1,theny=1+2xprinty
令x=1,得f(1)=f(1)-f(1)=0令0
(1)由题意可得:当x1=x2时,x1/x2=1所以f(x1/x2)=f(1)=f(x1)-f(x2)=0在区间(0,正无穷大),当x1>x2时,x1/x2>1所以f(x1/x2)=f(x1)-f(x2)
若x1>x2>0则:f(x2*x1/x2)=f(x2)+f(x1/x2)=f(x1)==>f(x1)-f(x2)=f(x1/x2)而x1>x2>0所以:x1/x2>1;所以f(x1/x2)>0==>f(x1)-f(x2)>0单增.原型是对数