已知正实数X1,X2及函数f(x)满足4^x=(1+f(x))/(1-f(x)),且f(X1)+f(X2)=1,求f(X
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/23 16:54:42
已知正实数X1,X2及函数f(x)满足4^x=(1+f(x))/(1-f(x)),且f(X1)+f(X2)=1,求f(X1+X2)的最小值
因为4^x=(1+f(x))/(1-f(x)),所以f(x)=(4^x-1)/(4^x+1)
且(4^x1-1)/(4^x1+1)+(4^x2-1)/(4^x2+1)=1
所以:2(4^(x1+x2)-1)/[4^(x1+x2)+4^x1+4^x2+1]=1
所以:4^(x1+x2)-3=4^x1+4^x2>=2√4^(x1+x2)
解得:4^(x1+x2)>=9
所以:f(x1+x2)=[4^(x1+x2)-1]/[4^(x1+x2)+1]
=1-2/[4^(x1+x2)+1]>=1-2/(9+1)=4/5.
且(4^x1-1)/(4^x1+1)+(4^x2-1)/(4^x2+1)=1
所以:2(4^(x1+x2)-1)/[4^(x1+x2)+4^x1+4^x2+1]=1
所以:4^(x1+x2)-3=4^x1+4^x2>=2√4^(x1+x2)
解得:4^(x1+x2)>=9
所以:f(x1+x2)=[4^(x1+x2)-1]/[4^(x1+x2)+1]
=1-2/[4^(x1+x2)+1]>=1-2/(9+1)=4/5.
已知正实数X1、X2 及函数f(x),满足4^x=(1+f(x))/(1-f(x) ),且f(x1)+f(x2)=1,则
求极值的已知正实数X1,X2,及函数f(x)满足 4^x = (1+f(x)) / (1-f(x)) ,且 f(x1)
已知正实数x1,x2及函数f[x]满足4^x=1+f[x]/1-f[x],且f[x1]+f[x2]=1.求f[x1+x2
已知正实数X1,X2 及函数f(X)满足4的x次=1+f(X)/1-f(X).且f(X1)+f(X2)=1 求f(x1+
已知正实数X1,X2及函数f(x)满足4^x=(1+f(x))/(1-f(x)),且f(X1)+f(X2)=1,求f(X
正实数x1,x2及函数f(x)满足4的x次方=[1+f(x)]/[1-f(x)] 且f(x1)+f(x2)=1 则f(x
已知定义在(0,正无穷大)上的函数f(x)满足f(x1/x2)=f(x1)-f(x2)且x>1,f(x)
已知函数f(x)=2^x,x1,x2是任意实数,且x1≠x2.证明1/2[f(x1)+f(x2)]>f[(x1+x2)/
定义在区间(0,正无穷大)上的函数f(x)满足 f(x1/x2)=f(x1)-f(x2) ,且当 x>1 时,f(x)
已知x1,x2为R+,4^X=(1+f(x)\=(1-f(x))且f(x1)+f(x2)=1求f(X1+x2)的min
已知函数f(x)=2^x.x1x2是任意实数且x1不等于x2,证明1/2f(x1)+f(x2)>f[(x1+x2)/2]
已知函数f(x)在[0,正无穷]上满足(X1-X2)[F(X1)-F(X2)]大于0,且f(2x-1)小于f(3x),则