.如图,在等腰直角三角形 ABC 中,斜边 22 BC ,过点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 07:10:34
解答在图片里
小朋友,题没完哦.
证明:∵在△ACE和△BCD中AC=BC∠ACE=∠BCD=90°CE=CD∴△ACE≌△BCD,∴∠CAE=∠CBD,∵∠BCD=90°,∴∠CBD+∠ADB=90°,∴∠CAE+∠ADB=90°,
证明:∵AC2=12+22=5,BC2=12+22=5,AB2=12+32=10,∴AC2+BC2=AB2=10,AC=BC=5,∴△ABC是等腰直角三角形.
应是“求证:BE是AD的一半"延长BE交AC的延长线于点F,则有AE垂直平分BF,得BE=EF,BF=2BE角CAD=角DBE=22.5度,AC=BC,角ACB=角BCF=90度所以三角形ACD全等于
证明:在RT△AHG和RT△CEG中:∠AHG=∠CEG=90°∠AGH=∠CGE(对顶角)∴RT△AHG∽RT△CEG(角角)∴∠GAH=∠GCE∵CH⊥AB,△ACB是斜边为AB的等腰RT△∴AH
证明:(1)∵△ABC和△DBE均为等腰直角三角形,∴AB=BC,BD=BE,∠ABC=∠DBE=90°,∴∠ABC-∠DBC=∠DBE-∠DBC,即∠ABD=∠CBE,∴△ABD≌△CBE,∴AD=
选(C)点A坐标为(1,1)点B坐标为(3,1)点C坐标为(1,3)直线BC的解析式是:y=-x+4直线BC和直线y=x的交点是:点D(2,2)当双曲线与△ABC交于点A时,k有最小值1×1=1当双曲
连接BD,分别用ASA证明△BDE≌△CDF,△BDF≌△ADE,即可将边CF转换为BE,AE转换为BF,在Rt△BEF中,用勾股定理求得EF=5
(1)观察结果是:当45°角的顶点与点C重合,并将这个角绕着点C在重合,并将这个角绕着点C在∠ACB内部旋转时,AE、EF、FB中最长线段始终是EF.(3分)(2)AE、EF、FB这三条线段能组成以E
50平方厘米,利用旋转
(1)证明:∵△AEF、△ABC是等腰直角三角形,∴∠EAF=∠BAC=45°,∠F=∠C=45°,∴∠FAD=∠CAE,∴△FAD∽△CAE,∴ADAE=AFAC,∵∠AEF=90°,AE=EF,∴
证明:连接AD∵△ABC是等腰直角三角形,D是BC的中点∴AD⊥BC,AD=BD=DC,∠DAQ=∠B,∴AD=BD(与下面两式用大括号括起来)∠DAQ=∠DBPBP=AQ,∴△BPD≌△AQD(SA
3.14×(62)2-6×6÷2,=3.14×9-36÷2,=28.26-18,=10.26;答:阴影部分的面积是10.26.
如图:(x-c)²+y²=9.x²+(y-c)²=7. x²+y²=1.消去x,y
,没有图额,图在哪?
(1)△ABE≌△ACB∵,△ADE、△ABC是等腰直角三角形,∴AB=ACAD=AE角BAC=∠EAD=45°∵AB=ACAD=AE角BAC=∠EAD=45°∴△ABE≌△ACB(SAS)(2)∵△
反复运用勾股定理、等量代换就可以了.PA²=(AD+PD)²1PB²=(BD-PD)²2其中AD=BDPC²=CD²+PD²=AD
因为等腰直角三角形的斜边为10cm,所以斜边上的高为12×10=5(cm),所以三角形的面积=12×10×5=25(cm2).答:△ABC的面积是25cm2.故答案为:25.