齐次方程x*dy dx=y*lny x的通解
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 12:08:28
方程两边求关x的导数ddx(xy)=(y+xdydx); ddxex+y=ex+y(1+dydx);所以有 (y+xdy
两边对【x】求导,注意,y是x的函数,利用复合函数求导1/[1+(y/x)^2]×(y/x)'=1/2×1/(x^2+y^2)×(x^2+y^2)',也就是:x^2/(x^2+y^2)×(xy'-y)
y'=(lnlnx)'/lnlnx=(lnx)'/lnxlnlnx=1/xlnxlnlnx
lny+x/y=0等式两边求导:y'*1/y+1/y+x*y'(-1/y²)=0(1/y-x/y²)y'=-1/y∴y'=(-1/y)/(1/y-x/y²)=-y/(y-
直接在等式中零,x=0,y=y(0),可得关于y(0)的方程解出y(0)即可.具体:e^0*y(0)+lny(0)/1=0即-y(0)=lny(0)作图y1=-x,y2=ln(x),两者的交点的横坐标
方程两边对x求导得2x+y′x2+y=3x2y+x3y′+cosxy′=2x−(x2+y)(3x2y+cosx)x5+x3y−1由原方程知,x=0时y=1,代入上式得y′|x=0=dydx|x=0=1
两边对x求导得y+xy'=(1+y')/(x+y)y(x+y)+x(x+y)y'=1+y'y'[x(x+y)-1]=1-y(x+y)y'=[1-y(x+y)]/[x(x+y)-1]dy=[1-y(x+
复合函数f(x)=lnxg(x)=ln[ln(x)]r(x)=ln{lnln(x)]}r'(x)=[1/lnln(x)]g'(x)=[1/lnln(x)][1/ln(x)]f'(x)=[1/lnln(
F(x,y)=x+lny-y=0dF(x,y)=0=(∂F(x,y)dx/∂x)+(∂F(x,y)dy/∂y)dy/dx=-(∂F(x,y)
设Y=y'降阶:Y'=(Y/x)ln(Y/x)这就是一个一阶齐次方程.设Y/x=u,所以Y=ux,Y'=u+x(du/dx),代回原方程,解得:lnu=C1x+1Y=xe^(C1x+1)所以y=[(C
哦,是我当时疏忽了.因为x不能等于零,只能无限接近零,所以x=0是一条渐进线.不用求导,看x趋向于正无穷和负无穷时y的趋向.因为x趋向于负无穷时,y趋向于零,所以y=0是一条渐进线.x趋向于正无穷时,
y=(ln(ln(x))'/ln(ln(x))=(ln(x))'/(ln(x)(ln(ln(x)))=1/(xln(x)ln(ln(x)))
答:y=ln(-x)y'(x)=[1/(-x)]*(-1)=1/x所以:y=ln(-x)的导数为y'(x)=1/x再问:非常感谢,,,那y=ln(3x+2)的导和y=ln(4x+2)的导分别怎么算呢?
dydx要是等式才行吧.如果是的话,这句话就是求这个等式的根,用r表示x.
y^2=(xy-x^2)y'(y-1)/y^2dy=dx/x两边积分得lny+1/y=lnx+C再问:不是这个答案哦再答:不是这个也是这个的变形
请看图求采纳
主要利用复合函数的求导:z=f(y),y=g(x),则z对x求导dz/dx=f'(y)*(dy/dx).等式左边对x求导过程:d(lny)/dx=(1/y)y',等式右边对x求导过程:d(x-y)/d
在方程ex+y+cos(xy)=0左右两边同时对x求导,得:ex+y(1+y′)-sin(xy)•(y+xy′)=0,化简求得:y′=dydx=ysin(xy)−ex+yex+y−xsin(xy).