Sn=1³ 2³ 3³ 4³.......

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 05:13:31
Sn=1³ 2³ 3³ 4³.......
求和Sn=1-2 3-4+

查收!再答:正在上传中再答:再答:

急求!高一数学题:已知数列{an},a1 = 1 , Sn是前n项和,Sn+1= Sn/( 3+4Sn) n >= 1

1/S(n+1)=3/Sn+4令1/Sn=bn则有b(n+1)=3bn+4b(n+1)+2=3(bn+2)等比数列,则bn+2=(b1+2)*3^(n-1)b1=1/S1=1/a1=1所以bn=3^n

已知数列{an},a1 = 1 ,Sn是前n项和,Sn+1= Sn/( 3+4n) n >= 1 ,求an通项公式

取倒数1/(Sn+1)=(4n+3)/Sn令bn=1/(Sn)得b1=1b(n+1)=bn*(4n+3)得b(n+1)/bn=4n+3(1)同理bn/(bn-1)=4(n-1)+3(2)...b2/b

数列an的前n项和为Sn,a1=1/4且Sn=Sn-1+an-1+1/2(n-1为下标)

1Sn=Sn-1+an-1+1/2an-an-1=1/2an=a1+(n-1)/2=1/4+(n-1)/2=n/2-1/423bn-bn-1=n3bn-3n/2-3/4=bn-1-(n-1)/2-1/

数列求和:sn=1+1/2+1/3+…+1/n,求sn

这是调和级数,除了逐项相加外,只有近似的求和公式为:Sn~ln(n)+c,c为欧拉常数0.577...

数列{an}前n项和为Sn,且2Sn+1=3an,求an及Sn

当n=1时、有2s1+1=3a1,即有a1=1,因为2Sn+1=3an,所以2Sn+1+1=3an+1.后式减去前式,得2an+1=3an+1-3an.即有an+1=3an,为等比数列,且公比为3,所

Sn=1+1/2+1/3+……1/n Sn的表达式

它是发散级数,没有通项公式.再给ln(n)的情况下,它是收敛的级数,在n趋向于无穷大的时候,定义它的极限为r(咖玛),称为欧拉常数.所以就有了一楼给出的结论.近似的等于ln(n)+r,在n趋向于无穷大

已知数列{An}中,A1=2,前n项和为Sn,当n=N*且n≥2时,恒有3Sn-4,An,2-(3/2)(Sn-1),成

1.An=2*(-1/2)^(n-1)2.有歧义,两种理解,第一种做法:N是定值,Tn=NSn/2=(N/2)*2(1+(-1/2)^N)/3=N(1+(-1/2)^N)/3第二种理解,N不是定值,可

已知数列{an}的前n项和为Sn,且满足Sn=Sn-1/2Sn-1 +1,a1=2,求证{1/Sn}是等差数列

由Sn=Sn-1/2Sn-1+1,两边同时取倒数可得1/Sn=(2Sn-1+1)/Sn-11/Sn=2+1/Sn-1即1/Sn-1/Sn-1=2故{1/Sn}是首项为1/2,公差为2的等差数列1/Sn

数列求和:Sn=1/1*2*3+1/2*3*4+.+1/n*(n+1)*(n+2) 求Sn

1/n*(n+1)*(n+2)=0.5/n-1/(n+1)+0.5/(n+2)Sn=[1-1/2-1/(n+1)+1/(n+2)]/2=[1/2-1/(n+1)+1/(n+2)]/2再问:多谢可不可以

已知数列{an}的首项a1=4,前n项和为Sn,且Sn+1-3Sn-2n-4=0,求数列{an}的通项公式

因为Sn+1-3Sn-2n-4=0整理得3Sn=Sn+1-2n-4因而得3Sn-1=Sn-2(n-1)-4两式相减3an=an+1-2令3(an+k)=an+1+k(构造等比数列)展开得3an+3k=

已知数列{an}的首相a1=1,a2=3,前n项和为Sn,且Sn+1(下标)、Sn、Sn-1(下标)(n≥2)满足(Sn

1.“满足(Sn-Sn+1)/Sn-1-Sn=2+1/an”根据这个式子,能化简成An+1/An=2An+1(注意这里及以后的An+1就是下标的意思)再进一步化简,能得到:An+1=2an+1再凑配能

an的前n项和Sn,a1=1,an+1=(n+2)/nSn,证数列Sn/n是等比数列和Sn+1=4an

1、A(n+1)=(n+2)sn/n=S(n+1)-Sn即nS(n+1)-nSn=(n+2)SnnS(n+1)=(n+2)Sn+nSnnS(n+1)=(2n+2)SnS(n+1)/(n+1)=2Sn/

(1).Sn=1+2×3+3×7...n(2^n-1),求Sn.

(1).Sn=1+2×3+3×7……n(2^n-1),求Sn.Sn=1×(2^1-1)+2×(2^2-1)+3×(2^3-1)+……+n(2^n-1)=(1×2^1+2×2^2+3×2^3+……+n×

Sn=3+2^n Sn-1=3+2^(n-1).则Sn-Sn-1=?

 再问: 再问:那个划横线的答案是不是错了再答:我觉得是

已知数列{an}的前n项和为Sn=1+2+3+4+…+n,求f(n)= Sn /(n+32)Sn+1的最大值

f(n)=[1/2(n+1)n]/[(n+32)(n+2)(n+1)1/2]=n/(n+32)(n+2)=n/(n^2+34n+64),f(n)×(n/n)=1/[n+(64/n)+34]且n为正整数

Sn=1x2+3x2^2+5x2^3+…+(2n-1)x2^n sn=2sn-sn

2sn=2x2+3x2^2x2+5x2^3x2(2n-1)x2^nx2sn=2sn-sn=2x2^2+2x2^3+…+2x2^n-1x2

设Sn为数列{an}的前n项和,且有S1=a,Sn+Sn-1=3n²,n=2,3,4,.

1)利用Sn+Sn-1=3n²,由归纳法可以得到Sn,其中用到奇数项平方和and偶数项平方和公式,你可以查下2)用an-an-1>0可得a范围再问:其中用到奇数项平方和and偶数项平方和公式

已知数列an中,a1=1,前n项和为Sn,对于任意的n≥2(n为自然数)3Sn-4,an,2-3/2Sn-1(n-1为下

对于任意的n≥2(n为自然数),由3Sn-4,an,2-3/2Sn-1(n-1为下标)总成等差数列,得2an=3Sn-4+2-3/2Sn-1即2an=3/2Sn+3/2(Sn-Sn-1)-2=3/2S

1+2+3+4+.+n,求Sn

等差数列求和公式公式:Sn=(a1+an)n/2;Sn=na1+n(n-1)d/2(d为公差);Sn=An2+Bn;A=d/2,B=a1-(d/2).