sin²x的幂级数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 18:52:49
设S(x)=∑(x^n)/n,由系数比值法易求出收敛域为[-1,1)求导,得S'(x)=∑x^(n-1),此为几何级数所以S'(x)=1/(1-x)两端求定积分,积分限取为0和x则得S(x)-S(0)
f(x)=1/(x+2)(x-1)=1/3[1/(x-1)-1/(x+2)]=-1/3[1/(1-x)+0.5/(1+0.5x)]=-1/3[1+x+x^2+.+0.5(1-0.5x+0.5^2x^2
f(x)=(cosx)^2=(cos2x+1)/2=cos2x/2+1/2=(i从0到正无穷){(-1)^i【(2x)^(2i)】/(2i)!}/2+1/2=(i从0到正无穷)(-1)^i*2^(2i
给你arcsinx的展开方法,详见下面图片.[1+(x-1)]^(3/2)=x^(3/2)是不能展开成x的幂级数的,要展开成x的幂级数的函数必须在x=0处无穷次可导,这个函数在x=0处二阶及二阶以上的
X-x^3/3!+x^5/5!-……再问:幂级数的展开式好难,我连最基本的e^x,sinx都展不来,有什么技巧吗?
你是错的!原式=(1-cos2x)/2=1/2-∑1/2((2x)^2n)/(2n)!(-1)^n=1/2-∑2^(2n-1)(x^2n)/(2n)!(-1)^n))=-∑2^(2n-1)(x^2n)
将e^x的麦克劳林公式中的x换成2-x即可.
鉴于没有悬赏,电脑也不是很好用,我只能告诉你方法了先对x积分一下,得到∑[1/n!]x^(n+1)这个的和大概是x*e^x吧,然后求导就行(n+1)/n!拆开后求和
y=(x^2)ln(1+x)对于F(x)=ln(1+x)导数为:F’(x)=1/(1+x)1/(1+x)=1-x+x^2-x^3+...+(-1)^(n-1)x^(n-1)+...n=1,2...则F
x^(1/2)就是幂函数就如x^2,还展什么再问:函数展开成幂级数和展开成麦克劳林级数是不同的吗?再答:麦克劳林级数实在泰勒级数x=0,的一种特殊形式。幂指数函数不提这个,个人觉得差不多
第一步,sin(ax-a^3)=sinaxcosa^3-cosaxsina^3第二步,运用sinx及cosx的幂级数展开公式把sinax及cosax展开第三步,把结果整理成关于x的幂形式
e^x=1+x/1!+x^2/2!+...x^n/n!.a^x=e^(xlna),将xlna代入上式中的x即可.再问:e^(xlna)上面的括号?什么意思我记得是a^xlna的再答:因为a=e^ln(
f(x)=(1-x)/(1-x)(1+x+x^2)(1-x)*[x^3+x^6+...+x^3n+...)]
ln(1+x)=∫[1/(1+x)]dx=∫(1-x+x^2-x^3+……+x^n+……)dx=x-(x^2/2)+(x^3/3)-(x^4/4)+……+[(-1)^(n+1)](x^n/n)+……(
f(x)=(1/3)*[1/(1-x)-1/(1+2x)]这样就变成两个等比级数的差一个首项是1/3,公比是x,另一个首相是1/3,公比是-2x下面就简单了f(x)=[(1/3)+(1/3)x+(1/
解题过程请看附图.
提示:有个公式:(1+x)^α=1+αx+α(α-1)x^2/2!+α(α-1)(α-2)x^3/3!+.在上面展开式中,你用-1/2代α,用-2x代x,最后各项再乘以x就行了.
不是很好的方法,因为需要知道ln10.首先e^x=∑{0≤n}x^n/n!=1+x+x²/2!+x³/3!+...10^x=e^(x·ln10)=∑{0≤n}x^n·(ln10)^