sin1 x一致连续性
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 02:58:02
连续性是单点性质,表示函数在这一点附近"变化不剧烈".而一致连续性是区间性质,表示在这一区间上"变化不剧烈".它的表述方式,是一定距离以内的自变量所对应的函数值的差距有一个共同的上界.显然如果没有这个
一致连续是比连续更苛刻一致连续让变量微小变化x引起的值的变化y也微小变化在一个范围内
几何区别表现在在不连续点是无穷大的,就比如1/x,它在(0,1)上连续,但在【0,1】不一致连续,主要表现在原点函数的斜率无穷大.再问:也就是说,函数连续表现为没有断点,而函数一致连续表现为不仅没有断
你的例子只能说明,你的这种找δ的方式不能证明一至连续性.但不能说明,别的方式达不到能证明一致连续性的效果.实际上是有的!由于1/2
这种基础的定理直接使用,不用去证明
一致连续的条件比连续要强.你试试y=1/x,0再问:这两个数不是选定的么?再问:这两个数不是选定的么?
1.一致连续与连续其实既有联系又有区别首先,二者肯定都是连续的,这毫无疑问从定义上看,明显有一致连续比普通的连续更“强”即要达到一致连续,就要满足比连续更苛刻的条件才行~2.这个其实并不矛盾因为一致连
①连续是从点出发定义的.x0是定义域一点,对任意ε>0,存在δ>0,使得当|x-x0|0可以和x0和ε都有关系.对于不同的x0,即使给的ε是同一个数,找的δ也往往不同.②一直连续直接从全局出发定义:在
函数f(x)在闭区间[a,b]上一致连续的充分必要条件是其在[a,b]上连续;函数f(x)在开区间(a,b)上(或无穷区间上)一致连续的充分必要条件是其在开区间(或无穷区间)上连续且f(a+0)以及f
g(x)=x^(1/m),x>=0.g(x)在[0,2]上一致连续,因为[0,2]是有界闭区间,任何连续函数都在有界闭区间上一致连续.当x1>x2>=1时,g(x1)-g(x2)=x1^(1/m)-x
一致连续是说,要让定义域下的任意两点x1,x2的函数值f(x1),f(x2)无限接近,总能通过x1,x2的无限接近达到目的.连续不一定一致连续比如y=1/x(x属于(0,1]),问题就出在y=1/x的
你说的都对.连续函数在闭区间内确实是一致连续的,但开区间就不一定.连续函数的定义是每一个点都连续,而对同一个epsilon>0,每一个点所对应的delta是不同的.但一致连续要求有一个确定的delta
证明:先具体说一下Lipschitz条件(我没学过,才从网上查到的,利普希茨连续条件(Lipschitzcontinuity)的定义:若存在常数K(非负),使得对定义域D的任意两个不同的实数x1、x2
有界闭区间上的连续函数一定是一致连续的(证明需要用到有限覆盖定理).反之,一致连续的函数显然是连续的.因此在有界闭区间上,连续与一致连续是等价的.再答:���ɰɣ�лл
可以证1/f(x)在连续当然也可以根据定义直接写(注意点就是f(x)一定同号因为有事就不详细解答了)再问:大神……麻烦写一下啊再问:大神……麻烦写一下啊再答:
一致连续.利用不等式|sinx|
任取0
所谓一致连续,就是要求当函数的自变量的改变很小时,其函数值的改变也很小,从而要求函数的导数值不能太大——当然只要有界即可.函数f(x)在[a,b]上一致连续的充分必要条件是在[a,b]上连续.函数f(
由函数的连续性定义到一致连续性定义的理解思路(因为数学语言很严谨,但却不丰富,故不少朋友对这两个定义理解起来都比较吃力,其实这两个定义有很大的差别,现在以我的理解,用比较饱满的言语,来叙述一下连续性定