非齐次微分方程右边只有e^x次方设特解为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 23:16:41
非齐次微分方程右边只有e^x次方设特解为
求微分方程(dy/dx)+y=e^-x的通解

特征方程r+1=0r=-1通解y=Ce^(-x)设特解y=axe^(-x)y'=ae^(-x)-axe^(-x)代入原方程得ae^(-x)-axe^(-x)+axe^(-x)=e^(-x)解得a=1因

求微分方程 e^(x+y)dy=dx;

e^x*e^ydy=dxe^ydy=e^(-x)dx积分:e^y=-e^(-x)+Cy=ln[C-e^(-x)]

求微分方程y''-3y'+2y=xe^2x(e的2x次幂)的通解,

∵y''-3y'+2y=0的特征方程是r²-3r+2=0,则r1=1,r2=2∴y''-3y'+2y=0的通解是y=C1e^x+C2e^(2x)(C1,C2是积分常数)设y''-3y'+2y

微分方程y''=e^x的通解为

答:y''=e^x积分:y'=∫e^xdxy'=e^x+C积分:y=∫(e^x+C)dxy=e^x+Cx+K,C和K为任意常数

验证函数y=(c1+c2*x)e^2x是微分方程y"-4y'+4y=0的通解,并求次微分方程满足初值条件y(0)=1,y

我晕啊y=(c1+c2*x)e^2xy'=C2e^(2x)+2(c1+c2*x)e^(2x)y''=2C2e^(2x)+4(c1+c2*x)e^(2x)+2C2e^(2x)代入y"-4y'+4y得0,

求微分方程y'=e^(2x-y)的通解

y'=e^(2x)/e^ye^ydy=e^(2x)dxe^y=(1/2)e^(2x)+Cy=ln[(1/2)e^(2x)+C]

求解微分方程.∫(dy/dx)=e^(x+y)

(dy/dx)=e^(x+y)(dy/dx)=e^x*e^y分离变量dy/e^y=e^xdx两边积分-e^(-y)=e^x+C1则-y=ln(C-e^x)整理得y=-ln(C-e^x)

求二阶常系数非齐次线性微分方程y^n-4y=e^2x 的通解

哪来的二阶微分?你是不是少打了''啊1,高中都知道怎么解2,高中还是知道怎么解,x取值确定下来,两段积分3,先积分挤出来在判断4,先求特征根,写出齐次通解,再根据后面非齐次部分求特解,两者加一下就是解

微分方程e^(y^2+x)dx+ydy=0

∵e^(y^2+x)dx+ydy=0==>e^(y^2)*e^xdx=-ydy==>-2ye^(-y^2)dy=2e^xdx==>e^(-y^2)d(-y^2)=2e^xdx==>e^(-y^2)=2

微分方程dy/dx=x+y/x-y属于什么方程:可分离变量微分方程,齐次微分方程,一阶线性齐次微分方程,一阶线性非齐次微

一阶线性非齐次再问:为什么是非齐次啊再答:打错了,齐次再问:…答案是齐次,还是一阶线性齐次?再答:再答:它等号右不为零,所以是一阶线性非齐次再答:这次是对的了。。。不好意思,没睡醒再问:喔喔谢谢!!!

求微分方程xy'-y=e^(x-1/x)

左右除以x^2,y'/x+y(1/x)'=e^(x-1/x).左边就是(y/x)',两边关于x积分就能得到y=x(右边的不定积分+C).不过e^(x-1/x)不定积分没有初等函数表示啊……是不是抄错了

已知函数e^2x+(x+1)e^x是二阶常系数线性非齐次微分方程y''+ay'+by=ce^x的一个特解,则该微分方程的

y=e^2x+(x+1)e^xy'=2e^2x+e^x+xe^xy"=4e^2x+3e^x+xe^x带入y''+ay'+by=ce^x解得a=-3b=2c=2y''-3y'+2y=2e^x3^2-4*

微分方程y''=sinx+e^(2x)的通解为

积分得:y'=-cosx+0.5e^(2x)+c1再积分得:y=-sinx+0.25e^(2x)+c1x+c2

求高阶微分方程y’”=2x+e^x通解

y'''=2x+e^xy''=x^2+e^x+Ay'=1/3*x^3+e^x+Ax+By=1/12*x^4+e^x+A/2*x^2+Bx+C(ABC分别是任意常数)

微分方程 dy/dx=(e^y+3x)/x^2

令u=e^y,则y=lnu,dy/dx=1/u*du/dx所以1/u*du/dx=(u+3x)/x^2x^2u'=u^2+3xuu'=(u/x)^2+3u/x令v=u/x,则u'=v+xv'v+xv'

第二题 什么是线性微分方程?齐次微分方程与非齐次微分方程都是其中的吧?

线性与否看次数:方程中函数与导函数的次数为1的微分方程,叫做线性微分方程;齐次与否,看比例,函数f(x,y)若符合f(ax,ay)≡f(x,y),则为齐次方程,否则不是.按照上述定义,这两个概念是互相

dy/dx = y/x 是可分离变量微分方程吗 还是齐次微分方程呢?

变量分离适用于解可以将xy分别放置等号两边的方程.形如y'=f(x)g(y)的微分方程就是可分离变量的微分方程这类方程可以用积分方法求解的化简得dy/g(y)=f(x)dx再两端积分设G(y)F(x)

下午考试,微分方程已知二阶常系数齐次线性微分方程两个特解为y1=1 y2=e^(-2x),则该微分方程为?

设通解为:y=C1*e^(0x)+C2*e^(-2x),C2=0,C1=1,y1=1,C1=0,C2=1,y2=e^(-2x),则特征方程为:r^2+2r=0,则该二阶常系数齐次线性微分方程为:y"+

求具有特解y1=e^-x,y2=2xe^-x,y3=3e^x 的3阶常系数齐次线性微分方程是什么?

设齐次线性方程ay'''+by''+cy'+dy=0y1'=-e^(-x)y1''=e^(-x)y1'''=-e^(-x)y2'=2e^(-x)-2xe^(-x)y2''=-2e^(-x)-2e^(-