作业帮 > 数学 > 作业

验证函数y=(c1+c2*x)e^2x是微分方程y"-4y'+4y=0的通解,并求次微分方程满足初值条件y(0)=1,y

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 21:55:53
验证函数y=(c1+c2*x)e^2x是微分方程y"-4y'+4y=0的通解,并求次微分方程满足初值条件y(0)=1,y'(0)=0的特解
验证函数y=(c1+c2*x)e^2x是微分方程y
我晕啊
y=(c1+c2*x)e^2x
y'=C2e^(2x)+2(c1+c2*x)e^(2x)
y''=2C2e^(2x)+4(c1+c2*x)e^(2x)+2C2e^(2x)
代入
y"-4y'+4y得0,得证
y(0)=1,
代入y=(c1+c2*x)e^2x得
1=C1
y'(0)=0代入y'=C2e^(2x)+2(c1+c2*x)e^(2x)得
0=C2+2C1
因此C1=1,C2=-2
特解是
y=(1-2x)*e^(2x)