验证函数y=(c1+c2*x)e^2x是微分方程y"-4y'+4y=0的通解,并求次微分方程满足初值条件y(0)=1,y
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 21:55:53
验证函数y=(c1+c2*x)e^2x是微分方程y"-4y'+4y=0的通解,并求次微分方程满足初值条件y(0)=1,y'(0)=0的特解
我晕啊
y=(c1+c2*x)e^2x
y'=C2e^(2x)+2(c1+c2*x)e^(2x)
y''=2C2e^(2x)+4(c1+c2*x)e^(2x)+2C2e^(2x)
代入
y"-4y'+4y得0,得证
y(0)=1,
代入y=(c1+c2*x)e^2x得
1=C1
y'(0)=0代入y'=C2e^(2x)+2(c1+c2*x)e^(2x)得
0=C2+2C1
因此C1=1,C2=-2
特解是
y=(1-2x)*e^(2x)
y=(c1+c2*x)e^2x
y'=C2e^(2x)+2(c1+c2*x)e^(2x)
y''=2C2e^(2x)+4(c1+c2*x)e^(2x)+2C2e^(2x)
代入
y"-4y'+4y得0,得证
y(0)=1,
代入y=(c1+c2*x)e^2x得
1=C1
y'(0)=0代入y'=C2e^(2x)+2(c1+c2*x)e^(2x)得
0=C2+2C1
因此C1=1,C2=-2
特解是
y=(1-2x)*e^(2x)
验证函数y=(c1+c2*x)e^2x是微分方程y"-4y'+4y=0的通解,并求次微分方程满足初值条件y(0)=1,y
验证y=C1 * e^(C2 - X) - 1是微分方程y″-9y=9的解但不是通解,C1、C2为任意常数.
求微分方程y''-y'+2y=e^X通解
求微分方程y’=1/(x+e^y)的通解!
求微分方程y'=e^(2x-y)的通解
求微分方程e^yy'-e^2x=0满足初值条件y(0)=0的特解
求微分方程通解 y''-4y'+4y=2^2x+e^x+1
验证给定函数是其对应微分方程的解:xyy"+x(y')^2-yy'=0,x^2/C1+y^2/C2=1
计算微分方程 y'+y-e^(-x)=0的通解
1.微分方程y'=2X+1的通解是?2.微分方程y'-2y=0的通解是?
求微分方程通解 y'' + a^2*y = e^x
求微分方程y'=y/(1+x^2)的通解