随机变量服从参数A的指数分布的密度函数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:56:37
学过,不过有还给老师了,你自己再想以下吧,
因为随机变量ξ,η相互独立,所以E(ξη)=E(ξ)E(η)而E(ξ)=1/λ,E(η)=np所以E(ξη)=np/λ
x和y相互独立且均服从参数λ=2的指数分布--->F(x,y)=F(x)*F(y)=(1-e^(-2x))(1-e^(-2y))=1-e^(-2x)-e^(-2y)+e^(-2x-2y)
事实上,任意随机变量的分布函数(CDF)均服从(0,1)上均匀分布. 补充.Y就是X的累积分布函数,累积分布函数的取值范围只能是(0,1).
经济数学团队帮你解答,有不清楚请追问.满意的话,请及时评价.谢谢!
答案是z/a²乘以E的-z/a次方.我估计你做不出来,是因为用卷积公式积分的时候,有X的取值范围要算根据z-x>0且x>0,所以x的取值范围是0到Z.
先令Y=lnXF(y)=P{Y≤y}=P{lnX≤y}=P{X≤e^y}=Fx(e^y)=1-e^(-e^(y+1))此为Y的分布函数f(y)=F`(y)=e^(y+1-e^(y+1))你确定参数是e
因为随机变量X服从参数为1的指数分布,所以f(x)=e^(-x)(x>0时)而f(x)=0(x
对于X有:DX=1/4EX=1/2所以EX²=DX+(EX)²=3/4对于Y有EY=1/4所以E(2X²+3Y)=2EX²+3EY=9/4注:各个版本教材对指数
参数为1,就是λ为1
解法的要点如下图,先找出分布函数的关系.经济数学团队帮你解答,请及时采纳.谢谢!
概率密度f(x)=1/3e^(-x/3),x>00,x≤0分布函数F(x)=∫1/3e^(-x/3)dx=1-e^(-x/3),x>0【从0积分到x】0,x≤0
指数分布的期望为参数的倒数,所以EX=1/2,EY=1/4故E(2X)=1,E(3Y)=3/4
X服从参数λ为的指数分布,则:EX=1/λ,X有分布函数:F(x)=1-e^(-λx),x>=0;于是P(X>EX)=1-P(X
由题设,X服从参数为λ的指数分布,知:DX=1λ2,λ>0,于是:P{X>DX}=P{X>1λ}=∫+∞1λλe−λxdx=−e−λx| +∞1λ=1e.
(1).f(x)=3e^(-3x),x>0;f(x)=0,其他.y1时,FY(y)=P(Y
选B.我看的书,方差是参数的平方.
P(Y=0)=P(X>1)=e^(-1)P(Y=1)=P(X
0.21/λ=1/5=0.2根据0—1分布,数学期望p方差p(1-p);二项分布(贝努里概型),数学期望np方差np(1-p);泊松分布,数学期望λ方差λ;均匀分布,数学期望(a+b)/2方差[(b-