随机变量X服从[0,2]的均匀分布,Y=cosx,求y的数学期望和方差

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 04:53:33
随机变量X服从[0,2]的均匀分布,Y=cosx,求y的数学期望和方差
已知随机变量X分布函数F(x)是严格单调的连续函数,证明 Y=F(x)服从(0,1)上的均匀公布?

证明:Fy(y)=P{Y再问:F(F^-1(y))=y?为什么可以直接等于y?还有怎么就可以得到结论了呢?能再说明一下吗?再答:函数f(x)的反函数是f^-1(x),这不是f(x)的-1次方,是反函数

若随机变量X服从U(0,2),求Y=X^2的概率密度函数,

那个U是平均分布吧?是的话就这么做:取小区间dy,则dy=2x*dx,值为dy的概率就是dp=0.5*dx,则概率密度:f=dp/dy=0.5*dx/(2x*dx)=1/(4x)=1/(4*y^0.5

设两个随机变量X,Y相互独立,且都服从均值为0,方差为1/2的正态分布,求随机变量|X-Y|的方差.

分析:这个直接求,有直接定理E(X)=E(Y)=u=0Z=X-YE(|Z|)=(2/√2π)∫ze^(-z^2/2)dz=√(2/π)D(X)=D(Y)=1/2D(|X-Y|)=E(|X-Y|^2)-

假设随机变量X服从参数为2的指数分布,证明:随机变量Y=1-e^(-2X)在区间(0,1)上服从均匀分布.

事实上,任意随机变量的分布函数(CDF)均服从(0,1)上均匀分布. 补充.Y就是X的累积分布函数,累积分布函数的取值范围只能是(0,1).

设随机变量X,Y相互独立,X服从λ=5的指数分布,Y在[0,2]上服从均匀分布,求概率P(X≥Y)

XY相互独立,那么XY联合分布密度f(x,y)=fx(x)*fy(y)fx(x)=5e^(-5x)fy(y)=1/2P(X>=Y)=∫∫f(x,y)dxdy=∫(0,2)1/2∫(y,∞)5*e^(-

高数填空设相互独立的随机变量X服从(0,2)上的均匀分布,Y服从参数为2的指数分布,则当0

∫[0,2]1/2dx∫[0,2]1/2*e^(-y/2)dy=1/4∫[0,2]∫[0,2]e^(-y/2)dxdy再问:e^(-y)?再答:没有啦,搞错上限了∫[0,x]1/2dx∫[0,y]1/

随机变量X服从[0,4]上的均匀分布,Y=(X-1)/2的密度函数为

Y服从[-0.5,1.5]的均匀分布,密度(函数)为0.5.

设随机变量X服从参数为2的指数分布,证明Y=e^-2X服从U(0,1)

解法的要点如下图,先找出分布函数的关系.经济数学团队帮你解答,请及时采纳.谢谢!

随机变量X与Y独立,且X服从[0,2]上均匀分布,Y服从r=2的指数分布,求概率P{X

因为x与Y独立所以联合分布是两者分布的乘积P{X

设随机变量X服从区间(0,2)上的均匀分布试求X的分布函数Fx(X)

/>1)X在(0,2)上均匀分布,所以X的密度函数是:通过积分可以求出X的分布函数:2)可以利用密度函数求出这个概率,也可以利用分布函数,以下为步骤,结果是0.5:3)我们可以把Y写成X的函数,Y=g

设连续随机变量X服从标准正态分布N(0,1),求Y=1-2X的概率密度函数

正态分布的线性函数还是正态分布E(Y)=E(1-2X)=1-2EX=1D(Y)=D(1-2X)=4D(X)=4故Y~N(1,4)

设随机变量X,Y,Z都服从区间[0,1]上的均匀分布,E[(X-2Y+Z)^2]

没有给出是否相互独立吗再问:没有给,不过应该是的吧,(是英文版的书,貌似没说独立这个词~)再答:若不独立,应该给出联合分布,若独立,就分解开求就行了饿:=E[x^2+4Y^2+Z^2-4XY+2XZ-

随机变量X服从区间[0,2π]上的均匀分布,求数学期望E(sinx)

概率密度函数:f(x)=1/(2π)x:[0,2π]=0其它xE(sinx)=(1/2π)∫(2π,0)sinxdx=-(1/2π)cosx|(2π,0)=0即:E(sinx)=0.

设随机变量X服从指数分布,求随机变量Y=min(X,2)的分布函数

可以利用Y与X的关系如图求出分布函数.经济数学团队帮你解答,请及时采纳.再问:再问:能不能帮我在做一下50题再答:这个我不会。前面的问题已经解决,请采纳!

假设随机变量X服从指数分布,则随机变量Y=min{X,2}的分布函数(  )

Y的分布函数是:F(y)=P(Y≤y)=P(min(X,2)≤y)=1-P(min(X,2)>y)=1-P(X>y,2>y)考虑y<2和y≥2两种情况当y<2时,FY(y)=1-P(X>y)=PX≤y