量子力学中怎样使矩阵对角化

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:55:07
量子力学中怎样使矩阵对角化
矩阵及其对角化,极小多项式

复数域上方阵A满足A²+A-3I=O,则A的特征值满足λ²+λ-3=0解得λ=λ1(r重),λ=λ2(n-r重)(实际为无理数,不好打字)又A的最小多项式必然是λ²+λ-

下列矩阵中哪些矩阵可对角化?并对可对角化得矩阵A,求一个可逆矩阵P,使P^-1AP成对角矩阵

|A-λE|=(2-λ)(3-λ)^2.所以A的特征值为2,3,3(A-2E)X=0的基础解系为a1=(1,0,0)'.(A-3E)X=0的基础解系为a2=(0,1,0)',a3=(-2,0,1)'.

量子力学中,矩阵或算符的对角化有什么意义?

矩阵的本征值(或叫特征值),本征向量会求吧,就是求解久期方程det|λE-A|=0,求出λ1,λ2,...,λn.X1,X2,...,Xn.所以A=(X1,X2,...,Xn)[λ1,λ2,...,λ

怎么判断一个矩阵能否对角化

1.所有特征根都不相等,那么不用说,绝对可以对角化2.有等根,只需要等根(也就是重特征值)对应的那几个特征向量是线性无关的,那么也可以对角化,如果不是,那么就不能了.综合起来是说的:有n个线性无关的特

线性代数矩阵相似对角化题目

既然你会求特征值,那我就不说了α1α2的求法:因为Ax=λx;当λ=0时,Ax=0,可求出通解x=a*[1;1;0]+b*[-1;0;1]为求对角化;我们要求出λ=0时,两个不相关的特征向量,其中两个

高等代数矩阵的对角化习题

证:(1)δ(X+Y)=A(X+Y)=AX+AY=δX+δYδ(kX)=A(kX)=kAX=kδX所以δ是线性变换(2)δe1=Ae1=a11e1+a21e3δe2=Ae2=a11e2+a21e4δe

线性代数对角化问题 这个矩阵能对角化么?

再问:令B=A+I这步没看懂~~再答:λ=-1那么A-λI=A-(-1)I=A+I

如何判断一个矩阵可不可以对角化?

n级矩阵A可对角化<=>A的属于不同特征值的特征子空间维数之和为n.实际判断方法:(1)先求特征值,如果没有相重的特征值,一定可对角化;(2)如果有相重的特征值λk,其重数为k,那么你通过解方程(λk

矩阵可对角化的条件是什么

以下将内容局部复制下来,详见原网址.定理1阶矩阵可对角化的充分必要条件是有个线性无关的特征向量.若阶矩阵定理2矩阵的属于不同特征值的特征向量是线性无关的.推论1若阶矩阵有个互不相同的特征值,则可对角化

线性代数矩阵对角化的一道题目

B的特征值为1,1,-1所以A的特征值为1,1,-1所以2I-A的特征值为1,1,3,所以r(2I-A)=3I-A的特征值为0,0,2,所以r(I-A)=1所以r(2I-A)+r(I-A)=4.再问:

线性代数:矩阵的对角化

有个定理是特征根的重数不小于特征向量的个数,那么你说:“特征单根对应的齐次方程组系数矩阵的秩小于n-1”就不正确了,所以并不矛盾再问:特征根的重数不小于特征向量的个数,如果是单根呢?那它的基础解系一定

怎么把可对角化矩阵对角化?

用特征多项式求特征值,求出的特征值为Λ的主对角元素也就是A的相似对角矩阵再问:不过不是对称矩阵才这么求吗??非对称的可以吗??再答:这吧是对称矩阵的求法,是一般矩阵都是这个求法,理解错了再问:那就是说

矩阵相似对角化和合同对角化

对于相似变换1,2,3,4因为这些都是正规阵,可以酉对角化5,6的反例0100对于合同变换,结论同上,酉变换既是相似变换也是合同变换

矩阵可对角化条件?

n阶方阵A可对角化A有n个线性无关的特征向量k重特征值有k个线性无关的特征向量

关于矩阵可对角化的问题

可以,这时A的极小多项式是P(x)的因子而P(x)无重根,故A可对角化

下列矩阵中哪些矩阵可对角化?并对可对角化得矩阵A,求一个可逆矩阵P,使P^-1AP成对角矩阵.

|A-λE|=1-λ-1-222-λ-2-2-11-λc1+c3-1-λ-1-202-λ-2-1-λ-11-λr3-r1-1-λ-1-202-λ-2003-λ=(-1-λ)(2-λ)(3-λ).所以A

16.13题:下列矩阵中那些矩阵可对角化?并对可对角化的矩阵A,求一个可逆矩阵P,使P^-1A成对角矩阵:

解:|A-λE|=2-λ1-112-λ1001-λ=(1-λ)[(2-λ)^2-1]=(1-λ)^2(3-λ).所以A的特征值为1,1,3(A-E)X=0的基础解系为:(1,-1,0)'.故A不能相似

线性代数问题,矩阵对角化

eig([-7112-4])ans=-10.4244-0.5756这个矩阵可以对角化,但手工无法计算

线性代数 矩阵对角化问题

一眼就能看出来是D啊.而且方法非常多相似的必要条件是特征值相同对吧,那么对角线元素和就相同给出的矩阵对角线元素和为3A对角线元素和-3B对角线元素和3C对角线元素和1D对角线元素和3显然A和C都不满足