P是等边三角形ABC内一点,且BP=1,CP=根号3,AP=2,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 11:07:40
∠PAD=60度因为△PBC是等边三角形所以∠PBC=∠PCB=∠BPC=60度所以∠APD=∠BPC=60度所以∠PAD=60度
因为PA〈AB即PA〈BC又PB+PC〉BC(三角形两边之和大于第三边)所以PA〈BC〈PB+PC即PA〈PB+PC
分析:作AB的垂直平分线,再根据等边三角形的性质及全等三角形的性质解答即可.作AB的垂直平分线,∵△ABC为等边三角形,△ABD为等腰三角形;∴AB的垂直平分线必过C、D两点,∠BCE=30°;∵AB
∠PBQ=60°且BQ=BPPB=PQ=QB∠ABC=60°∠ABP=∠CBQBQ=BPBA=BC三角形ABP=三角形CBQ所以PA=CQ=3PB=PQ=QB=4PC=5三角形PQC为直角三角形∠PQ
△PBQ的形状是等边因为∠PBQ=60BQ=BP
∵△P’AB≌△PAC∴∠P’AB=∠PAC∵∠BAP+∠PAC=60°∴∠P'AB+∠BAP=60°∵P'A=PA,∠P'AP=60°连接P'P∴△P'AP是等边△∵P'A=PA=6∴P'P=PA=
将△BPC绕B点逆时针旋转60°,得△BDC',因为∠ABC=60°,所以C'与A重合则有△BPC≌△BDA,∠BPC=∠BDA可知△BEP为等边△,故∠BDP=60°PD=BP=4,而PA=5,AD
(1)证明:在三角形PAB中,PA+PB>AB,同理,PB+PC>BC,PA+PC>AC将三个不等式左右分别相加,得2(PA+PB+PC)>AB+BC+AC因为AB=BC=AC=1所以2(PA+PB+
第一问:∵△PAC绕A逆时针旋转得到的.∴AP'=AP=6,∠P'AB=∠PAC∴△ABC是等腰三角形∵△ABC是正三角形∴∠BAC=60°∵∠PAC+∠BAP=60°,∠P'AB=∠PAC∴∠P'A
把△ABP以A点为原点旋转,使AB与AC重合.P到P'处.△APP'为正△PP'=2,∠AP'P=60°△PCP'为RT△,∠PP'C=60°∠APB=120°
等边三角形内任意一点,到三边距离的和,等于一边上的高,h1+h2+h3=√(a^2-1/4a^2)=√3/2a
一样的题目,参考一下:点P是等边三角形ABC内一点,且PA=2,PB=2倍根号3,PC=4以A点为轴心,把三角形ABC顺时针旋转60度.C点就与B点重合,P点到了P1点.AP1=AP=2,BP1=CP
是不是这个啊,将△APC绕A点逆时针转60度,点C与点B重合,点P移动到P',连接PP',∵△AP'B是△APC旋转得到的,∴AP=AP',∠APC=∠AP'B
∵PB+PC>BC而p是三角形内一点,∴PA
连接PA,PB,PB则S三角形ABC=S三角形ABP+三角形ACP+三角形BCP1/2*AB*h=1/2*AB*PF+1/2AC*PE+1/2BC*PD因为AB=AC=BC所以PF+PE+PD=h
等于正三角形边长3倍再问:不对吧,正三角的面积是(根号3)/4乘以边长的平方吧再答:我说的是它的面积刚好等于这个正三角形边长的 3 倍。当然得先求出边长,经计算等于 4&
∵△ABC是等边三角形,∴AC=BC,∠ACB=60°.在△ADC和△BDC中,AC=BCAD=BDCD=CD,∴△ADC≌△BDC(SSS),∴∠ACD=∠BCD.∵∠ACD+∠BCD=∠ACD=6
1、角PBQ=60度=角ABC角PBQ=角PBC+角CBQ角ABC=角PBA+角PBC所以角PBA=角CBQ又因为AB=BC,BP=BQ所以三角形ABP和三角形CBQ是全等三角形所以AP=QC2、PB
解,实际只有四点:三角形内1点,外4点.以⊿ABC的各边分别向外做正⊿ABP,⊿BCQ,⊿ACR,连接PC,AQ,BR交于一点O.则,P,Q,R,O为满足点.可以证明:OP,OQ,OR分别是AB,BC