p是正方形abcd对角线ac上一点pe垂直ab 是判断的p与ef的位置关系

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 22:44:17
p是正方形abcd对角线ac上一点pe垂直ab 是判断的p与ef的位置关系
如图,在正方形ABCD中,P是对角线AC上一点,PB⊥PE,求证:PB=PE

证明:△BPC和△DPC中:BC=DCPC公共∠BCP=∠DCP=45°所以:△BPC≌△DPC(边角边)所以:∠PBC=∠PDE………………(1)PB=PD…………………………(2)四边形BPEC中

如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,

这题是做对称点以AC为轴做点D的对称点F易证  点F与点B重合所以  DP = BP所以  DP + 

在正方形abcd中,o是对角线ac的中点,p是对角线ac上一动点,过点P作PE⊥PB

⑴  上图.⊿PSE≌⊿PTB﹙ASA﹚,∴PE=PB.. ⊿PBE等腰直角.∠EBF=45º,⊿BCE绕B逆时针旋转90°,到达⊿BAG. &nbs

如图,已知P是正方形ABCD的对角线AC上的一点,PF//AD,PE⊥PB

第一问楼主会了,我就不写了.第二问:作PQ⊥AD于Q,所以PFDQ是矩形DF=PQ=sin∠PAQ*PA=sin45°*PA=√2/2*PA由第一问结论知DF=EF所以EF=√2/2*PACF=sin

正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,则PD+PE的最小值为

因为ABCD是正方形,所以D跟B关于AC对称.所以BP等于DP.所以PEPD=PEBP.要使PEBP最小.即B,P,E三点共线.PEBP=BE=AB=4,所以PEPD的最小值为4.

正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,则PD+PE的最小值多

连接PB,则PD=PB,那么PD+PE=PB+PE,因此当P、B、E在一直线的时候,最小,也就是PD+PE=PB+PE=BE=AB=4

如图,正方形ABCD的面积为12,三角形ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE

使P点是BE与AC的交点则可,这时PE+PD[(最小值)]=BE=AB=√(12)=2√(3),证明:连接BD,则AC是BD的垂直平分线,∴PD=PB,∴PD+PE=PB+PE=BE,在AC上任取异于

正方形ABCD面积为12 三角形ABC是等边三角形 点E在正方形ABCD内 在对角线AC上有一点P,使PD+PE的和最小

根号下12再问:能给详细的做法吗?再答:连接PB,PD=PB,所以PB+BE的最小值就是BE.

正方形ABCD的面积为10,三角形ABC是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最

有正方形ABCD的对称性可知PD=PB所以PD+PE=PB+PE当P为AC与BE交点时,PB+PE最小,且PB+PE=BE因为三角形EBC是等边三角形所以BE=BC=10所以PD+PE的最小值为10

正方形ABCD的边长为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,

d.12再问:请说明理由再答:再答:再答:再答:再答:再问:那个为什么DE'最短呢再答:纠正一下,be为最短路径的路径长。点p在ac上,就作d关于ac的对称点,又因ac为对角线、abcd为正方形,d的

有一个地方不懂如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P

因为对称所以PD+PE=PB+PE这样看没问题吧然后在△PBE中,两边之和大于第三边所以只有PB,PE在一条直线上才能使PB+PE最小因为P是任意一点所以这个时候P点应为BE与AC的交点.

如图所示,正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,

∵ABCD是正方形∴AC⊥BDAB=AD=A=BC=CD=√16=4∵△ABE是等边三角形∴AB=BE=AE=4要使PD+PE的和最小以AC为对称轴,做D的对称点,由于BD⊥AC所以D的对称点恰好是B

正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点.

①求证:∠PDE=∠PED;证明:∵四边形ABCD是正方形∴AB=ADAC平分∠BAD和∠BCDAC⊥BD∴∠BAC=∠DAC=∠ACD=∠CDB=45°又∵AP是公共边∴△BAP≌△DAP∴BP=D

边长为4的正方形ABCD中,点o是对角线AC的中点,P是对角线AC上一动点.

 提示:⑴过P作BC的垂线,垂足为G.∵P是AC上的点,∴PG=PF,又 ∠BPG+∠EPG=∠RPG+∠EPF=90°,  将⊿PBG绕P逆时针旋转90°;与

正方形ABCD中,P是对角线AC上一点,PE垂直AB于E,PF垂直BC于F.

PD=EF∵PE⊥AB,PF⊥BC,AB⊥BC∴∠PEB=∠PFB=∠B=90°∴四边形PEBF是矩形连结PB∵在△PCD与△PCB中PC=PC,∠PCD=∠PCB=45°,PD=PB∴△PCD≌△P

如图所示,正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过

连接PD①∵AB=ADAP=AP∠BAP=∠DAP=45°∴△APB≌△APD∴∠ABP=∠ADP∠PBC=∠PDF∵PE⊥PB∴在四边形BCEP中∠PBC+∠PEC=180°∵∠PEF+∠PEC=1

正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点

题目显然有问题.DF怎么可能与CF垂直呢? F点在CD上面.应是CF=DF吧.(1)如图,连接PD,作PG⊥BC于G.1.易证明PF=PG,∠BPG=∠EPF.因此,三角形BPG与EPF全等

如图,P是正方形ABCD的对角线AC上一点,E在BC上,且PB=PE

提示:先证明△BPC≌△DPC得到PB=PD=PE作PM⊥BC于M,PN⊥CD于点N再证△PEM≌△PND可得(1)PD=PE(2)PD⊥PE

如图,P是正方形ABCD对角线BD上一点

连接PC,∵PE⊥DC,PF⊥BC,ABCD是正方形,∴∠PEC=∠PFC=∠ECF=90°,∴四边形PECF为矩形,∴PC=EF,又∵P为BD上任意一点,∴PA、PC关于BD对称,可以得出,PA=P