P是正方形ABCD外一点,PA=根号2,PB=4,PD最长
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:45:28
用假设:如果pc垂直PAB,则pc垂直pa.(1)连接ac,因为pa垂直ABCD(题目条件),则pa垂直ac.(2)这样,在三角形pac中出现2个90度角,很显然(1)(2)互为悖论.
∠PBC=15°.证明:连接PB、PC,∵PA=PD=AD,∴△PAD是等边△,∴各内角=60°,易得:PA=BA,PD=CD,∠BAP=∠CDP=30°,∴∠ABP=∠APB=75,同理:∠DPC=
(1)证明MN//平面PBC连AC,交BD于O,则BN=(1/3)BD=(2/3)BO,过N作GE交AB于G,交BC于E,则GE∥AC,且GE=(2/3)AC,NE=(2/3)OC,作MH∥AC,交P
过A作AE⊥AP,使E、B在AP的两侧,且AE=PA=√2.显然有:PE=2.∵ABCD是正方形,∴∠BAD=90°、AB=AD.∴∠PAE+∠PAB=∠BAD=∠PAB=90°+∠PAB,∴∠BAE
如图,已知点P为正方形ABCD内一点,连结PA、PB、PC.\x0d[标签:papb,正方形,abcd]二、如图,已知点P为正方形ABCD内一点,连结PA、PB、PC.\x0d1.将△PAB绕点B顺时
证明:∵PA⊥面ABCD,∴PA⊥AD又∵BC∥AD∴PA⊥BC又由AB⊥BC,PA∩AB=A∴BC⊥平面PAB又AE⊂平面PAB∴BC⊥AE又由AE⊥PB,BC∩PB=B∴AE⊥平面PBC又∵PC⊂
把△PBC绕点B逆时针旋转90°得到△ABM,连接PMPB=BM=2∠PBM=90°PM=2√2,∠BPM=45°,∠APB=135°,∠MPA=90°AM=PC=3
连接AN并延长交BC延长线于Q,连接PQ易得:AD∥BQ得DN∶BN=AN∶NQ又AM∶MP=DN∶NB得:AM∶MP=AN∶NQ即:MN∥PQ又PQ在面PBC上∴MN∥面PBC
(1)∵将△PAB绕点B顺时针旋转90°到△P′CB的位置,∴△PAB≌△P'CB,∴S△PAB=S△P'CB,S阴影=S扇形BAC-S扇形BPP′=π/4(a^2-b^2);(2)连接PP′,根据旋
把ΔPAB绕B旋转,使AB与AC重合,P点落在P',连PP'.易得等腰直角三角形PBP',PP'=4√2,∠PP'C=90,PC^2=(4√2)^2+2^2,PC=6
如图,对于平行四边形PCP'A有PA+PC=2PG同理:PB+PD=2PG故,结果为4PG选A
6分之根号6再问:是三分之根号六再答:额,是的,算错了
设AB=a(向量),AD=b, AP=c PC=a+b-c PE=a/2-c PD=b-
(1)证明:因为E,F分别为PA,PD中点所以EF‖AD因为ABCD为正方形,所以不真包含于平面EFG所以BC平行平面EFG(2)三棱锥E-AFG的体积=1/3底
PA=PD>>>PB=PC角BPC=30度>>>角PBC=75度,BC*tan75度/2-AB=AD*tan角PAD/2,正方形ABCD>>>tan角PAD=tan75度-2=√3>>>角PAD=60
以前考试收藏过,题一样,不过比你多了一问,直接给你发图片吧:
连接AC,BD因为在正方形ABCD中AC与BD是正方形有对角线则AC⊥BD因为PA⊥平面ABCD且BD∈平面ABCD所以PA⊥BD所以BD⊥平面PAC因为BD∈平面PBD所以平面PBD⊥平面PAC连接
哇塞好怀旧的题目啊灯我想想
∠APB=135°设PA=a,PB=2a,PC=3a把△ABP绕点B顺时针旋转90°得△AEQ∵正方形ABCD中,AB=BC∴E与C重合∵△ABP≌△CBQ∴CQ=AP=a,BQ=BP=2a∴∠ABP
解题思路:(1)依题意,将△P′CB逆时针旋转90°可与△PAB重合,此时阴影部分面积=扇形BAC的面积-扇形BPP\'的面积,根据旋转的性质可知,两个扇形的中心角都是90°,可据此求出阴影部分的面积