p为双曲线9分之x的²-16分之y的²

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 14:03:20
p为双曲线9分之x的²-16分之y的²
双曲线x²/16-y²/9=1上一点P到焦点F1的距离为3,则P到F2的距离为

由双曲线的定义,|PF1-PF2|=2a=8所以|3-PF2|=83-PF2=±8PF2=11(-5舍去)即P到F2的距离为11

过双曲线9分之X²-16分之Y²=1的右焦点作倾斜角为45°的直线交双曲线于A.B两点.

由题知:c^2=16+9=25,c=5所以右焦点的坐标为F2(5,0),因为过其做倾斜角为45°的直线,所以直线为:y=x-5(1).把直线方程代入曲线方程中:得到:16x^2-9y^2=14416x

已知F1,F2是双曲线x^2 /16 - y^2 /9=1的两个焦点,P为双曲线上一点,

a=4,b=3,则c=5F1F2=2c=10,|PF1-PF2|=2a=8因为PF1⊥PF2所以:F1P²+F2P²=F1F2²=100F1P²+F2P

已知双曲线9x ^2-16x ^2=144 上的一点p 到该双曲线一个焦点的距离为4则p 到另一个焦点的距离为多少

9x^2-16x^2=144x^2/16-y^2/9=1a^2=16a=4因为|4-d|=2a=84-d=8或4-d=-8d=-4(舍去)或d=12

双曲线x^2/9-y^2/16=1的两个焦点为F1F2,点P在双曲线上,若PF1⊥PF2,求点P的坐标

由题意,两个焦点为F1(-5,0);F2(5,0)PF1⊥PF2,也就是说OP=F1F2/2=c=5其实P点就是圆x^2+y^2=25与双曲线x^2/9-y^2/16=1计算:144=16x^2-9y

已知双曲线C:四分之x平方-y平方=1,P为双曲线C上任意一点. 1求证:点P到双曲线C的两条渐近线的距离的...

(1)设点P(x,y),则渐近线方程为y+x/2=0,y-x/2=0,d1d2=|y+x/2|/根号下(1+1/4)*[|y-x/2|/根号下(1+1/4)]=[y^2-(x/2)^2]*(4/5)=

已知双曲线x^2/9-y^2/16=1的左右焦点分别为f1f2,若双曲线上一点p,使角f1pf2=90,则三角形f1pf

a²=9,b²=16所以c²=9+16=25c=5则F1F2=2c=10令PF1=p,PF2=q由双曲线定义|p-q|=2a=6平方p²-2pq+q²

双曲线x^2/9-y^2/16=1的两个焦点为F1,F2,点P在双曲线上,若PF1⊥PF2

最后一步错了S=(1/2)×│F1F2│×│y1│=(1/2)│PF1││PF2│=16│F1F2│=2C=10,前面还有个1/2.所以Y1应该是16/5

在同一直角坐标系中,直线y=-2分之3X与双曲线Y=K分之X交于点P,且P点横坐标为-3,求双曲线的解析式.

∵P点的横坐标为-3将x=-3代入y=x/k得y=-3/k∴P(-3,-3/k)将点P代入y=-3x/2得k=-2/3∴y=-3x/2但以上求得的表达式非双曲线我想原题应该是双曲线y²=x/

已知F1.F2分别为双曲线x^2/9 - y^2/16 =1的左右两个焦点,且点P在双曲线上

①P(5,16/3)②若角F1OF2=60°不可能吧?角F1OF2=180度?

双曲线9分之X²-16分之Y²=1的两个焦点为F1,F2,点

解题思路:双曲线的定义解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq.

如果双曲线X^2/16-Y^2/9=1,左焦点为F1,点P在双曲线的右支上,则PF1的斜率取值范

给个老实的做法~~首先,左焦点F1可以立刻写出来是(-4,0),则设立直线PF为:y-0=k(x+4),接着与双曲线方程9x^2-16y^2=144联立,可以得出一个联立方程:(9-16k^2)x^2

双曲线4分之x平方-5分之y平方=1右焦点为f,右准线为l,若双曲线上点p到l距离为3分之5,求p的轨迹

a²=4,b²=5则c²=9c=3所以l是x=a²/c=4/3所以到l距离是5/3则横坐标是4/3-5/3=-1/3或4/3+5/3=3因为a=2所以双曲线上的

解析几何双曲线问题双曲线16x²-9y²=144的左,右焦点分别为F1,F2,点P在双曲线上,且∠F

X2/9-Y2/16=1,F1(-5,0),F2(5,0)设PF1=T,PF2=T+6由余弦定理,1/2=(T^2+(T+2)^2-100)/2*(T+2)*T解得T(T+2)=96S=1/2*SIN

数学圆锥双曲线方程已知双曲线a方分之x方-b方分之y方=1(a>0,b>0)的左右焦点分别为F1.F2,点P在双曲线的右

设PF2=t,则PF1=3t,在直角三角形PF1F2中可得F1F2=根号10t=2c,2a=PF1-PF2=2t,所以a=t,c=2分之根号10t,b=2分之根号6t,a,b用t表示的形式代入原方程,