过抛物线y 2 2px的焦点F的直线交抛物AB两点O是抛物线顶点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 14:13:13
用极坐标解抛物线方程:ρ=2/(1-cosθ)设|AF|=2/(1-cosα),α∈[0,2π)则|BF|=2/(1+cosα)|FB|/|AF|=(1-cosα)/(1+cosα)=-1+2/(1+
证明:如图因为抛物线y2=2px(p>0)的焦点为F(p2,0),所以经过点F的直线的方程可设为x=my+p2;代入抛物线方程得y2-2pmy-p2=0,若记A(x1,y1),B(x2,y2),则y1
要证明以AB为直径的圆必与抛物线的准线相切,就要满足圆心O到准线的距离为AB一半(即半径).已知A(X1,Y1),B(X2,Y2),设焦点为F因为抛物线上任一点到焦点的距离等于其到准线的距离所以AB=
分析:高是不变的,为OF=1.使S△MON最小,既使MN最小.当MN垂直于X轴时,MN最小,MN=4.所以三角形MON的面积最小值是=1/2*1*4=2
(1)抛物线y=x^2①的焦点F是(0,1/4),y'=2x,设AB:y=kx+1/4,代入①,x^-kx-1/4=0,设A(x1,x1^),B(x2,x2^),P(x,y),x1≠x2,则x1+x2
(1)F(1,0)AB过F点设直线AB:x=my+1设A(x1,y1),B(x2,y2)x=my+1代入y^2=4x得y^2-4my-4=0△AOB面积=1/2*OF*|y1-y2|=1/2*√[(y
解题思路:(1)知识点:两点间距离公式(2)知识点:抛物线的定义解题过程:FJ1
面积为4乘以根号2,.设x=ky+1,代入抛物线方程PQ可用k表示,求得k的平方为1.面积就出来了我做了,你也要做一下哦有问题,可以问我
(1)焦点为1/2P焦点到原点的距离为1/2p=1所以p=2y^2=4xF(1,0)(2)是向量OA×向量OB的值吗?
关系是相切.设ME、NG垂直于准线.同时做圆心OD垂直于准线,所以OD=(ME+NG)/2.由抛物线定义知ME+NG=MF+NF=直径.所以OD长等于半径,即相切.
设C(x1,y1)D(x2,y2)由题目可知:p=4那么焦点F(2,0)因为直线的倾斜角为45,所以斜率为1所以直线方程为:y=x-2带入抛物线方程中有:(x-2)^2=8x即是:x^2-12x+4=
(一)由题设,可设椭圆的方程为(x²/a²)+(y²/b²)=1.(a>b>0).易知,抛物线y²=8x的焦点F(2,0).故可知c=2,又e=c/a
1,设A(X1,Y1),B(X2,Y2),K1为过A点的切线线斜率,K2为过B的切线斜率,所以K1=2/x1,K2=2/x2,所以K1*K2=4/x1x2=4/(-4)=-1.所以AM垂直BM2,M,
过抛物线y^2=4x焦点F(1,0)的弦AB长=16/3,设A(x1,y1),B(x2,y2),则|AB|=|AF|+|FB|=x1+1+x2+1=16/3,∴x1+x2=10/3,AB的斜率k=(y
1,设抛物线准线与x轴交于点D,由向量AF=向量FB,及抛物线定义AF=AC,可得Rt三角形ABC中,AC=1/2AB,故角ABC=30度设AC=x,则有AB=2x,BC=根号3x又向量BA和向量BC
角ADB=90度有题可知P=2设A(X1,Y1)B(x2,y2)则D(2,y1+y2/2)向量DA=(x1-2,y1-y2/2)DB=(x2-2,y2-y1/2)角ADB=向量DA*向量DB/DA模*
设抛物线是y^2=x,弦PQ是x=1/4所以PQ的长为2*根号1/4=1一半是1/2,焦点F到准线的距离是1/2且F是PQ为直径的圆的圆心所以,以PQ为直径的圆与抛物线的准线相切推广,也成立设抛物线的
由题意,F(1,0)可设B(b2,2b),C(c2,2c)由“两点式方程”可知,直线BC的方程为(b+c)y-2bc=2x由题设,点F恰为△ABC的重心,可得:3=1+b2+c2,0=2+2b+2c.
不妨设抛物线方程为y^2=2px,直线AB过焦点(p/2,0),可设为:x=ky+p/2联立可得y^2-2kpy-p^2=0,设A(y1^2/(2p),y1),B(y2^2/(2p),y2),则B1(
抛物线的过焦点弦有个性质:1/|AF|+1/|BF|=2/p.本题中,2p=2,因此p=1,所以1/|AF|+1/|BF|=2,-----------(1)又|AF|+|BF|=25/12,-----