过ad两点的圆o与bc边相切于点e
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 05:06:45
如图,已知∠XOY=90°,射线OZ是∠XOY的平分线,边长为4的正方形AOCB的顶点A、B、C分别在射线OY、OZ、OX上.现将正方形AOCB绕点O顺时针旋转,若旋转角为a,且0°<a<45°,在选
1、A,B,E是切点,即AD=DE,BC=CE;做DF垂直BC交BC于F;即CF=6,DF=8;则CD=10;CE-DE=6,CE+DE=10,则BC=CE=8,AD=DE=2;2、当P点与圆心重合时
(1)方法1:过D作DF⊥BC于F,在Rt△DFC中,DF=AB=8,FC=BC-AD=6,∴DC2=62+82=100,即DC=10.(1分)设AD=x,则DE=AD=x,EC=BC=x+6,∴x+
证明:如图,连接DF.因为BC与圆相切,所以∠CDF=∠DAF.…(4分)因为∠EFD与∠EAD为弧DE所对的圆周角,所以∠EFD=∠EAD.又因为AD是∠BAC的平分线,故∠EAD=∠DAF.&nb
1.证明:等腰梯形ABCD中,角A=角B等腰三角形AOE中,角A=角AEO所以角AEO=角B根据同位角相等,两直线平行,得OE平行于BC2.证明:连结OG,因为BC是圆O的切线,所以OG⊥BC又因为E
证明:连接OD,如图所示:∵OA=OD,∴∠ODA=∠OAD.∵AD∥CO,∴∠COD=∠ODA,∠COB=∠OAD.∴∠COD=∠COB.在△ODC和△OBC中OD=OB∠DOC=∠BOCOC=OC
证明:∵四边形ABCD的边AB,BC,CD,DA分别与圆O相切与E,F,G,H∴AE=AH,BE=BF,CF=CG,DG=DH∴AH+DH+BF+CF=AE+BE+CG+DG∴AD+BC=AB+CD
设AP=X时,圆O与CD切于FOP=OF=4-AP/2=4-0.5*X;OP=BP/2=0.5√(X²+3²);4-0.5*X=0.5√(X²+3²);X=55
连接OE交AD于G∵E为弧AD中点,∴OE⊥AD,AG=DG,∵BC是切线,AC是直径,∴∠ACB=90°,在RTABC中,cosB=BC/AB=3/5,设BC=3X(X>0),则AB=5X,∵AC=
设AB中点为O,连接ODOCOEOE=OA=OB=4设BC=xAD=yCD=xyOD=根号(16y方)OC=根号(16x方)三角形OCD为直角三角形OD方OC方=CD方16x^216y^2=x^2y^
分析:连接BD,根据AD∥OC,易证得OC⊥BD,根据垂径定理知:OC垂直平分BD,可得CD=CB,因此只需求出CB的长即可;延长AD,交BC的延长线于E,则OC是△ABC的中位线;设未知数,表示出O
设AB中点为O,连接ODOCOEOE=OA=OB=4设BC=xAD=yCD=x+yOD=根号(16+y方)OC=根号(16+x方)三角形OCD为直角三角形OD方+OC方=CD方16+x^2+16+y^
连接BD交OC于E,由于AD//OC,所以BE/DE=Bo/AO=1,所以E是BD中点,因为三角形BDO是等腰三角形,所以OC垂直于BD,即使OC是BD的垂直中心线,所以CB=BD,所以三角形BCO全
假设这个对角线是AC,反正也无所谓.连接OM,因为圆O与BC相切于M,所以OM垂直于BC,由于都是半径,所以OM=OA;设OA=x,则OM=x,由于AB=1,所以对角线=根号2,OC=根号2-x,由于
分析:过O作CD,AB的垂线交CD,AB于GH,则证OM=OG即可,;证明:∠OMC=∠OGC,∠MCO=∠GCO,且公共边OC相等,故△MCO≌△GCO,则OM=OG,又OH+OM=AB,OH√2=
(1)连接OD,OE,∵等腰Rt△ABC的直角边AB、AC分别与圆O相切于点E、D,∴∠A=∠ADO=∠AEO=90°,∴四边形AEOD是矩形,∴AD=AE,∴四边形AEOD是正方形,∴OD=AD=3
1.证明:连结OC因为CE=CB,半径OE=OB,OC是公共边所以△OEC≌△OBC(SSS)则∠OEC=∠OBC又DE与圆O相切于点E,即∠OEC=90°则∠OBC=90°所以BC是圆O的切线,且以
证明:∵AB=DC,AD=BC.(已知)∴四边形ABCD为平行四边形,AD∥BC.∴∠EDO=∠FBO;又OD=OB,∠EOD=∠FOB.则⊿EDO≌⊿FBO(ASA),OE=OF.
AC+AD=BC,连接OD因为cA是圆O的切线,所以OA垂直AC,所以∠OAD=90,同理可证:∠OEB=90,所以∠OAD=∠OEB=90,证直角△OAD全等于直角△OEB(HL),所以AD=AE.
(1)证明:∵AB为⊙O的直径,∴∠BCA=90°,又∵BC∥OD,∴OE⊥AC,即:∠OEC=∠BCA=90°.(2分)又∵OA=OC,∴∠BAC=∠OCE,(3分)∴△COE∽△ABC;(4分)(