pa pb是圆o的切线,a,b为切点,角apb=40°
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 11:12:27
PQ平分线段EFsinEPQ/sinFPQ=sinPEF/sinPFE,即sinAPQ/sinBPQ=sinPEF/sinPFE(把角的名字换一下而已)APBO构成一个关于对角线OP对称的四边形,Q在
这只是大概的,还有一些你自己加一点再问:嗯嗯谢谢
l连接OPOP垂直平分AB交AB于D△OAD∽△OAP∠P=2∠BAC=50°再问:三角形'Oad=oap求解释再答:两个三角形不是全等,是相似。两个都是Rt是三角形且有一个公共角∠AOP或者不用相似
PA等于PB所以该方程有两个等根也就是4m²=12所以m=√3PA=PB=AB=√3所以∠OAB=30°所以OA=1阴影等于2倍(△PAO-扇形)△PAO面积√3*0.5扇形面积为π/6所以
如图,过圆心O连接op.oa,因为op是角apb的平分线,所以角opa等于60度,所以在直角三角形opa中,由勾股定理求出pa长为三分之四倍根号三.
切与AB说明角OAP和角OBP是直角.连接OP因为AO=OB,OP=OP和前面两个角相等,证明两个三角形全等,说明角OPA=角OPB而两角相加等于120度,所以两个角都是六十度,所以AO是根号三倍的A
这题最简单的解法就是用直角三角形,连接OA和OP,有OA垂直于PA,那么三角形OPA为直角三角形且∠APO=60°OA=4所以有PA=4*√3
OA=OD=R,∠OAD=∠ODAOC‖AD,∠ODA=∠COD,∠OAD=∠BOC即∠COD=∠BOC又OB=OD=R,OC=OC三角形COD≌三角形COBBC是圆O的切线,切点为B,即CB⊥OB则
OP∥BC.证明:连接OB,AB.∵PA,PB均为圆O的切线.∴∠PAO=∠PBO=90°.(切线的性质)又∵OA=OB,OP=OP.∴⊿PAO≌⊿PBO(HL),∠2=∠3.∵OA=OB,∠2=∠3
证明:△AOP≌△BOP∴PA=PB△AOP≌△CAP∴PA/PC=PO/PA∴PA^2=PC*PO∴PA^2=PB^2=PC*PO
“樱之雪舞—欣”:OA⊥PA,OB⊥PB(半径⊥切线)PA=PB(圆外一点到圆的切线相等),OP=OP,∠PAO=∠PBO=90°△PAO≌△PBO∠POB=∠POA∠ACO=1/2(∠AOB=∠PO
连接AO∵⊥PA是圆O的切线,A为切点∴AO⊥AP∵OB=OA=6,AP=8∴tan∠APO=6/8=3/4(我自己理解画图做的,不是很确定.)
连接OA因为PA是圆o的切线,所以OA⊥PART三角形APO中tan∠APO=OA/PA=OB/PA=6/8=3/4
S=Spab+圆-弓形AB=(2倍根号3)^2*4分之根号3+TT*2*2-120/360*TT*2*2+2倍根号3*根号3/2
CD与圆O位置关系:相切因为PAPB是圆O切线所以PA=PB又因为△PCD周长为L,当CD与圆相切为EAC=CE,DE=DB即AC+BD=CDL=2(AP+BP)L=2AP所以相切
证明:连接BD交OC于E因为AB是直径所以∠ADB=90度所以AD⊥BD因为O为AB中点,AD平行OC所以E为BD中点所以OC⊥BD因为OD=OB所以OC垂直平分BD所以CD=BC因为BC为圆O的切线
因为是切线,所以角OBP=角OAP都=90度四边形内角和为360,所以角AOB+角APB=180度三角形AOB中,边OA=OB,所以角OBA=角OAB=(180度-角AOB)/2=(180度-(180
已知圆o的半径为1,PAPB为两条切线,AB为两切点,则PA向量点乘PB向量的最小值为(-3+2*根号2)已知0=(1+根号t)^2
弧AOB是圆面积1/3而PD平分弧AOB结果:1/6乘以3.14第二题看不清
证明:连接OA,OB,OP. 点B在圆心O上,且PA=PB;