pa pb是圆o的切线,a,b为切点,角apb=40°

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 11:12:27
pa pb是圆o的切线,a,b为切点,角apb=40°
四点共圆的运用PA,PB 是圆O的两条切线,A,B为切点.D是弧AB上一点,过D点作圆O的切线分别交PA,PB于E,F,

PQ平分线段EFsinEPQ/sinFPQ=sinPEF/sinPFE,即sinAPQ/sinBPQ=sinPEF/sinPFE(把角的名字换一下而已)APBO构成一个关于对角线OP对称的四边形,Q在

如图'PA'PB圆O的切线,A'B为切点'AC是圆O的直径'角BAC=25度'求角P的度数

l连接OPOP垂直平分AB交AB于D△OAD∽△OAP∠P=2∠BAC=50°再问:三角形'Oad=oap求解释再答:两个三角形不是全等,是相似。两个都是Rt是三角形且有一个公共角∠AOP或者不用相似

已知PAPB,切圆O于A,B两点连AB,且PA.PB的长是方程x方-2mx+3=0的 两根,AB=m,求圆

PA等于PB所以该方程有两个等根也就是4m²=12所以m=√3PA=PB=AB=√3所以∠OAB=30°所以OA=1阴影等于2倍(△PAO-扇形)△PAO面积√3*0.5扇形面积为π/6所以

直线pa pb是圆o的两条切线a b 分别为切点且角apb等于120度圆o的半径为4厘米求切线长pa

如图,过圆心O连接op.oa,因为op是角apb的平分线,所以角opa等于60度,所以在直角三角形opa中,由勾股定理求出pa长为三分之四倍根号三. 

直线PA,PB是圆O的两条切线,A,B分别为切点,且角APB=120度,圆O的半径为4cm,求切线长PA.

切与AB说明角OAP和角OBP是直角.连接OP因为AO=OB,OP=OP和前面两个角相等,证明两个三角形全等,说明角OPA=角OPB而两角相加等于120度,所以两个角都是六十度,所以AO是根号三倍的A

直线 PA、PB是圆O的2条切线 A、B分别为切点 且∠APB=120° 圆O的半径为4厘米 求切线长PA

这题最简单的解法就是用直角三角形,连接OA和OP,有OA垂直于PA,那么三角形OPA为直角三角形且∠APO=60°OA=4所以有PA=4*√3

已知AB是圆O的直径,BC是圆O的切线,切点为B,OC平行于AD,求证DC是圆O的切线

OA=OD=R,∠OAD=∠ODAOC‖AD,∠ODA=∠COD,∠OAD=∠BOC即∠COD=∠BOC又OB=OD=R,OC=OC三角形COD≌三角形COBBC是圆O的切线,切点为B,即CB⊥OB则

如图,AC是圆O的直径,PA,PB是圆O的切线,切点分别为A,B.OP与CB有怎样的位置关系

OP∥BC.证明:连接OB,AB.∵PA,PB均为圆O的切线.∴∠PAO=∠PBO=90°.(切线的性质)又∵OA=OB,OP=OP.∴⊿PAO≌⊿PBO(HL),∠2=∠3.∵OA=OB,∠2=∠3

如图,已知PA、PB是圆O的两条切线,A、B为切点,

证明:△AOP≌△BOP∴PA=PB△AOP≌△CAP∴PA/PC=PO/PA∴PA^2=PC*PO∴PA^2=PB^2=PC*PO

p为圆o外一点,PA,PB为圆o的切线,A,B是切点,BC是直径.求证:AC‖OP

“樱之雪舞—欣”:OA⊥PA,OB⊥PB(半径⊥切线)PA=PB(圆外一点到圆的切线相等),OP=OP,∠PAO=∠PBO=90°△PAO≌△PBO∠POB=∠POA∠ACO=1/2(∠AOB=∠PO

PA是圆O的切线,A为切点,PO交圆O与点B,PA=8,OB=6,则tan角APO

连接AO∵⊥PA是圆O的切线,A为切点∴AO⊥AP∵OB=OA=6,AP=8∴tan∠APO=6/8=3/4(我自己理解画图做的,不是很确定.)

PA是圆o的切线,A为切点,PO交圆o于B,PA=8,OB=6,求tan∠APO的值

连接OA因为PA是圆o的切线,所以OA⊥PART三角形APO中tan∠APO=OA/PA=OB/PA=6/8=3/4

如图,PA.PB是圆o的切线,点A.B为切点

S=Spab+圆-弓形AB=(2倍根号3)^2*4分之根号3+TT*2*2-120/360*TT*2*2+2倍根号3*根号3/2

PAPB是圆O切线,AB是切点,连接OAOBOP,过O做OC,ODjiao APBP圆CD两点,连接CD,设△PCD周长

CD与圆O位置关系:相切因为PAPB是圆O切线所以PA=PB又因为△PCD周长为L,当CD与圆相切为EAC=CE,DE=DB即AC+BD=CDL=2(AP+BP)L=2AP所以相切

已知AB为圆O的直径,过B点作圆O的切线BC,连接OC,弦AD平行OC.求证:CD是圆O的切线.

证明:连接BD交OC于E因为AB是直径所以∠ADB=90度所以AD⊥BD因为O为AB中点,AD平行OC所以E为BD中点所以OC⊥BD因为OD=OB所以OC垂直平分BD所以CD=BC因为BC为圆O的切线

如图所示,PA、PB是圆O的两条切线,A、B为切线

因为是切线,所以角OBP=角OAP都=90度四边形内角和为360,所以角AOB+角APB=180度三角形AOB中,边OA=OB,所以角OBA=角OAB=(180度-角AOB)/2=(180度-(180

两道不等式的题已知圆o的半径为1,PAPB为两条切线,AB为两切点,则PA向量点乘PB向量的最小值为()已知0第二小题打

已知圆o的半径为1,PAPB为两条切线,AB为两切点,则PA向量点乘PB向量的最小值为(-3+2*根号2)已知0=(1+根号t)^2

如图,AP是圆心O的切线,A为切点,点B在圆心O上,且PA=PB,求证PB是圆心O的切线.

证明:连接OA,OB,OP.      点B在圆心O上,且PA=PB;