pa pb是圆o的两条切线,切点分别为A.B,若直径AC等于12
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 11:09:17
PQ平分线段EFsinEPQ/sinFPQ=sinPEF/sinPFE,即sinAPQ/sinBPQ=sinPEF/sinPFE(把角的名字换一下而已)APBO构成一个关于对角线OP对称的四边形,Q在
这只是大概的,还有一些你自己加一点再问:嗯嗯谢谢
图呢据描述可知:三角形DPA和APE相似,可得PD/PA=PA/PE即2/4=4/PE解得PE=8DE=PE-PD=6(直径)则半径OA=3方法二:PA维圆O切线,可知,OA垂直于PA又知OA=OD根
角APB=120则角AOB=180-120=60连接OPOP平分角APB和AOB三角形AOP为直角三角形60度角所对边为4所以切线长为3分之4倍根号3
连接BC.在四边形OAPB中,角APB=120度,角A和角B是90度,所以角AOB是60度.又因为角ACB=1/2*角AOB=30度三角形ABC中AC是圆直径,所以角ABC=90度.因此角BAC=18
如图,过圆心O连接op.oa,因为op是角apb的平分线,所以角opa等于60度,所以在直角三角形opa中,由勾股定理求出pa长为三分之四倍根号三.
切与AB说明角OAP和角OBP是直角.连接OP因为AO=OB,OP=OP和前面两个角相等,证明两个三角形全等,说明角OPA=角OPB而两角相加等于120度,所以两个角都是六十度,所以AO是根号三倍的A
∵PA,PB是圆O的两条切线,A,B是切点,∴∠PAO=90°,∠PBO=90°∵AC是圆O的直径,∠BAC=35°∴∠BOC=2∠BAC=70°∵∠P=360°-∠PAO-∠PBO-∠AOB=∠BO
证明:△AOP≌△BOP∴PA=PB△AOP≌△CAP∴PA/PC=PO/PA∴PA^2=PC*PO∴PA^2=PB^2=PC*PO
我会再问:给我再答:你先点个采纳我一会就做出来了再问:靠,我有种上当受骗的感觉喃再答:是的再问:你,,,再问:我太单纯了
CD与圆O位置关系:相切因为PAPB是圆O切线所以PA=PB又因为△PCD周长为L,当CD与圆相切为EAC=CE,DE=DB即AC+BD=CDL=2(AP+BP)L=2AP所以相切
答案见图,理由为 在直角三角形中,如果直角边等于斜边的一半,则该直角边所对的角为30°
令BD与圆的切点为E连接OE∵OE=OA=r,BA=BE,OB=OB∴△BOA全等△BOE∴∠BOA=∠BOE,即∠BOE=1/2∠AOE同理,∠DOC=∠DOE,即∠DOE=1/2∠COE∴∠BOD
证明:连接OA,OB,AB∵PA,PB是⊙O的切线∴∠OAP=∠OBP=90°∵OA=OB,OP=OP∴△OAP≌△OBP∴PA=PB,∠APO=∠BPO∴AB⊥PO∵BC是直径∴∠BAC=90°即A
设po=x,则AP=BP=根号(x^2-1),sinAPO=1/x.cosAPB=1-2sinAPO^2向量PA*向量PB=(x^2-1)cosAPB,求导求最值即可
连接OQ、OP,则PO⊥PM,OQ⊥PQ所以OQPM四点共圆,且OM为直径,即圆心坐标为(a/2,b/2),半径为|OM|/2所以圆方程为:(X-a/2)^2+(Y-b/2)^2=(a^2+b^2)/
/>∵PA、PB切圆O于A、B∴PB=PA=6∵CD切圆O于E∴CE=AC,DE=BD∴CD=CE+DE=AC+BD∴△PCD的周长=PC+CD+PD=PC+AC+BD+PD=PA+PB=12(cm)
证明:连接PO∵PA、PB是圆O的两条切线∴OA⊥PA,OB⊥PB又∵OA=OB=半径,OP=OP∴Rt⊿PAO≌Rt⊿PBO(HL)∴PA=PB
已知圆o的半径为1,PAPB为两条切线,AB为两切点,则PA向量点乘PB向量的最小值为(-3+2*根号2)已知0=(1+根号t)^2
弧AOB是圆面积1/3而PD平分弧AOB结果:1/6乘以3.14第二题看不清