证明正定矩阵A=P(转置)×P
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 22:44:35
存在可逆矩阵M使得M'AM=E此时M'BM仍然对称,从而存在正交矩阵Q使得Q'M'BMQ=DD为对角阵.令P=MQ即可
因为A正定所以存在可逆矩阵C使得C'AC=E.对实对称矩阵C'BC,存在正交矩阵D,使得D'(C'BC)D为对角矩阵而D'(C'AC)D=D'D=E也是对角矩阵故令P=CD即满足要求.再问:为什么C'
首先知道一个定理:A正定存在可逆矩阵C,使得A=C*C的转置接下来证明你的题:因为A正定所以存在可逆矩阵C,使得A=C*C的转置设C的逆的转置=D则D可逆,且A的逆=D*D的转置(对上式两边取逆就得到
A正定,则存在正交阵Q和对角元全是正数的对角阵D,使得A=Q^TDQ,记C是对角元是D的对角元的平方根的对角阵,即D=C^2=C^TC,于是A=Q^TC^TCQ,P=CQ是可逆阵.反之,A=P^TP,
A正定《=》A所有特征值都是正的而A的n次方的特征值=A的特征值的n次方所以,A所有特征值都是正的《=》A的n次方的特征值都是正的这又《=》A的n次方是正定的
正定矩阵的性质:设M是n阶实系数对称矩阵,如果对任何非零向量X=(x_1,...x_n),都有XMX′0,就称M正定(PositiveDefinite).因为A正定,因此,对任何非零向量X=(x_1,
做奇异值分解A=UΣV^T,然后取P=UV^T,S=VΣV^T即可
对A做奇异值分解A=USV^T,那么P=UV^T,S=VSV^T即为所求
1.A'记作A的转置A'=(P'BP)'=P'B'PB为m阶对称正定阵,即B'=B所以A'=P'BP=A,即A是对称的.2.r维非零向量x,x'Ax=x'(P'BP)x=(Px)'B(Px)因为R(P
证明:任意非0向量V,因为C可逆,所以,存在X,使得:C*V=X(因为:X是下面方程的C^(-1)*X=VC^(-1)满RANK,所以总是可解出X)则:V(转)*C(转)*A*C*V=X(转)*A*X
首先知道一个定理:A正定存在可逆矩阵C,使得A=C*C的转置接下来证明你的题:因为A正定所以存在可逆矩阵C,使得A=C*C的转置设C的逆的转置=D则D可逆,且A的逆=D*D的转置(对上式两边取逆就得到
《===:n阶实对称矩阵A正定==》==》存在n阶可逆矩阵Q,使得A=Q^TQ==》A=(Q^T, 0)(Q^T,0)^T=(Q\\0)^T(Q\\0)==》有m*n列满秩矩阵P、使得A=P
1、当m为偶数时,A^m=[A^(m/2)]'[A^(m/2)]为正定阵2、当m为奇数时,A^m=A^((m-1/)2)AA^((m-1)/2)=[A^((m-1/)2)]'AA^((m-1)/2)=
搞清楚正定的意义就很容易证明了.矩阵A是正定的等价于对于任意非零向量a,都有a'Aa>0;如果A、B都是正定的,那么对于任意非零向量a,都有a'Aa>0;a'Ba>0;显然对于任意非零向量a,就有a'
这个我会叻特征值有一个性质:n阶矩阵A与他的转置矩阵A(T)有相同的特征值.证明如下:因为A的伴随矩阵正定,所以特征值严格大于零.所以A的特征值大于零.所以A正定
你说的是A的逆吧.A的特征值全为正,A逆的特征值都为A特征值的倒数,所以也全为正,所以正定.再问:�ܲ���˵˵ȫ���
设A'为A的转置,考虑B=A'A.则B为正定矩阵.可证明存在正定矩阵S使B=S².取P=AS^(-1),则P'=(S')^(-1)A'=S^(-1)A'.P'P=S^(-1)A'AS^(-1
P^{-1/2}BP^{-1/2}=P^{-1/2}(P-H^TPH)P^{-1/2}=I-(P^{1/2}HP^{-1/2})^T(P^{-1/2}HP^{-1/2})令C=P^{-1/2}BP^{
正定的定义是:A是n阶实系数对称矩阵,如果对任何非零向量X=(x_1,...x_n)都有X'AX>0,就称A正定矩阵你的题目中说明除了x=0都不能使得Ax=0成立,也就是只有x=0才能使得AX=0,这