证明正定矩阵A=P(转置)×P

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 22:44:35
证明正定矩阵A=P(转置)×P
设n阶矩阵A对称正定,n阶矩阵B为对称矩阵,证明存在合同变换矩阵P,使得P'AP与P'BP均为对角矩阵

存在可逆矩阵M使得M'AM=E此时M'BM仍然对称,从而存在正交矩阵Q使得Q'M'BMQ=DD为对角阵.令P=MQ即可

AB均为n阶实对称阵,A正定,证明存在n阶实可逆阵P使P’AP和P‘BP均为对角阵(P‘为转置矩阵)

因为A正定所以存在可逆矩阵C使得C'AC=E.对实对称矩阵C'BC,存在正交矩阵D,使得D'(C'BC)D为对角矩阵而D'(C'AC)D=D'D=E也是对角矩阵故令P=CD即满足要求.再问:为什么C'

A是n阶正定矩阵,证明A的伴随矩阵也是正定矩阵

首先知道一个定理:A正定存在可逆矩阵C,使得A=C*C的转置接下来证明你的题:因为A正定所以存在可逆矩阵C,使得A=C*C的转置设C的逆的转置=D则D可逆,且A的逆=D*D的转置(对上式两边取逆就得到

试证明:实对称矩阵A是正定矩阵的充分必要条件是存在可逆矩阵P,使A=PTP

A正定,则存在正交阵Q和对角元全是正数的对角阵D,使得A=Q^TDQ,记C是对角元是D的对角元的平方根的对角阵,即D=C^2=C^TC,于是A=Q^TC^TCQ,P=CQ是可逆阵.反之,A=P^TP,

A是n阶正定矩阵,证明A的n次方矩阵也是正定矩阵

A正定《=》A所有特征值都是正的而A的n次方的特征值=A的特征值的n次方所以,A所有特征值都是正的《=》A的n次方的特征值都是正的这又《=》A的n次方是正定的

怎样证明矩阵A为正定矩阵

正定矩阵的性质:设M是n阶实系数对称矩阵,如果对任何非零向量X=(x_1,...x_n),都有XMX′0,就称M正定(PositiveDefinite).因为A正定,因此,对任何非零向量X=(x_1,

设A十一n阶实可逆矩阵,证明:存在一个正定矩阵S和一个正交阵P,是A=PS

对A做奇异值分解A=USV^T,那么P=UV^T,S=VSV^T即为所求

B为m阶对称正定阵,P是秩为r的m*r型矩阵,P^TBP=A,证明:证明:A是对称正定阵.

1.A'记作A的转置A'=(P'BP)'=P'B'PB为m阶对称正定阵,即B'=B所以A'=P'BP=A,即A是对称的.2.r维非零向量x,x'Ax=x'(P'BP)x=(Px)'B(Px)因为R(P

若A是正定矩阵,C是可逆矩阵,证明:C(转置)*A*C是正定矩阵

证明:任意非0向量V,因为C可逆,所以,存在X,使得:C*V=X(因为:X是下面方程的C^(-1)*X=VC^(-1)满RANK,所以总是可解出X)则:V(转)*C(转)*A*C*V=X(转)*A*X

已知A是n阶正定矩阵,证明A的伴随矩阵A*也是正定矩阵.

首先知道一个定理:A正定存在可逆矩阵C,使得A=C*C的转置接下来证明你的题:因为A正定所以存在可逆矩阵C,使得A=C*C的转置设C的逆的转置=D则D可逆,且A的逆=D*D的转置(对上式两边取逆就得到

证明、n阶实对称矩阵A正定的充要条件是、有m*n列满秩矩阵P、使得A=P^TP

《===:n阶实对称矩阵A正定==》==》存在n阶可逆矩阵Q,使得A=Q^TQ==》A=(Q^T, 0)(Q^T,0)^T=(Q\\0)^T(Q\\0)==》有m*n列满秩矩阵P、使得A=P

设A正定矩阵,证明A^m为正定矩阵.

1、当m为偶数时,A^m=[A^(m/2)]'[A^(m/2)]为正定阵2、当m为奇数时,A^m=A^((m-1/)2)AA^((m-1)/2)=[A^((m-1/)2)]'AA^((m-1)/2)=

设实矩阵A,B都是正定矩阵,证明A+B也是正定矩阵.

搞清楚正定的意义就很容易证明了.矩阵A是正定的等价于对于任意非零向量a,都有a'Aa>0;如果A、B都是正定的,那么对于任意非零向量a,都有a'Aa>0;a'Ba>0;显然对于任意非零向量a,就有a'

请证明:矩阵A的伴随矩阵正定,则矩阵A正定,谢谢!

这个我会叻特征值有一个性质:n阶矩阵A与他的转置矩阵A(T)有相同的特征值.证明如下:因为A的伴随矩阵正定,所以特征值严格大于零.所以A的特征值大于零.所以A正定

证明设矩阵A是正定矩阵,证明A-1次方也是正定矩阵

你说的是A的逆吧.A的特征值全为正,A逆的特征值都为A特征值的倒数,所以也全为正,所以正定.再问:�ܲ���˵˵ȫ���

A为n阶可逆矩阵,证明存在一个正定阵s和一个正交阵p使A=ps.这个怎么证

设A'为A的转置,考虑B=A'A.则B为正定矩阵.可证明存在正定矩阵S使B=S².取P=AS^(-1),则P'=(S')^(-1)A'=S^(-1)A'.P'P=S^(-1)A'AS^(-1

若存在对称正定矩阵P,使B=P-H∧TPH为对称正定矩阵,试证明下列迭代格式收敛 x(k+1)

P^{-1/2}BP^{-1/2}=P^{-1/2}(P-H^TPH)P^{-1/2}=I-(P^{1/2}HP^{-1/2})^T(P^{-1/2}HP^{-1/2})令C=P^{-1/2}BP^{

正定矩阵证明 

正定的定义是:A是n阶实系数对称矩阵,如果对任何非零向量X=(x_1,...x_n)都有X'AX>0,就称A正定矩阵你的题目中说明除了x=0都不能使得Ax=0成立,也就是只有x=0才能使得AX=0,这