证明数列收敛并求数限xn=n的K次方 a的n次方
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 08:04:08
目的是证明收敛数列的有界性.数列{Xn}收敛到a(不是n=a,),根据极限定义对于任意E>0,存在正整数N,当n>N,不等式/Xn-a/<E都成立,此处E可以选为1.直观地想就是当n趋于无穷的时候,X
由题意可以xn为分式,不妨设xn=an/bn,且an,bn互质,可知x1=1/2,x2=2/3,x3=3/5,x4=5/8,x5=8/13,x6=13/21……即a1=1,a2=2,a3=3,a4=5
Xn-1=(X(n-1)-1)/4;所以数列{Xn-1}为公比是1/4的等比数列,首项为0-1=-1Xn-1=-(1/4)^(n-1);Xn=1-(1/4)^(n-1);显然收敛于1.
x(n+1)=(xn+2)/(xn+1)(n>=0),X(n+2)=[X(n+1)]^2
Xn=√(2+Xn-1)两边平方得:Xn²=2+Xn-1Xn是递增序列,Xn-1
很复杂,关键是证明这个数列是单调增的,因为这个数列有上界是显然的.那么怎么证明这个数列单调增呢将后一项与前一项作差.只要这个差值大于0就可以了.现在关键是证明xn^2-xn<1.为了得出这个式子
x0>0xn是正数列x(n+1)=(xn+xn+1/xn^2)/3>=三次根号(xn*xn*1/xn^2)=1因此xn是有界的正数列x(n)>=1x(n+1)-xn=(-xn+1/xn^2)/3=[-
易证奇数项子列与偶数项子列都是单调递增且有界,故都有极限.分别设为A与B.有:A=1+1/BB=1+1/A解出A与B都等于(1+根号5)/2
极限为0.5*(1+根号5).证明:设f(x)=1+(Xn-1/(1+Xn-1)),对f(x)求导,得导数为正,f(x)单调递增,又f(x)=1+(Xn-1/(1+Xn-1))小于2,有上界.利用单调
(3X(n-1),3Xn)min=|f(x)/sinx|=|求和bk|我期待正确解答,题目很好啊!
由归纳法x1=√2<2,设xn<2,则x(n+1)=√2+xn<√(2+2)=2,∴0<xn<2,xn有界.∵x(n+1)=√(2+xn)>√(2xn)=√2*√xn>√xn*√xn=xn,∴xn有界
第几步你看不懂?|(Xn-a)+a|
先用单调性或者微分中值定理证明ln(n+1)-ln(n)>1/n然后应该会了吧
可以考虑用柯西收敛准则.不难求出IXn-Xn-1I=4/3^(n-1)显然Lim[4/3^(n-1)]=0即对任意E>0,总存在正整数N,使得n>N时,I4/3^(n-1)-0I=IXn-Xn-1I
写成指数函数形式,2为底,指数是单增的,等比级数求和,可求极限,利用指数函数连续性,或用归纳法证xn单增且有上界,极限存在,对公式两边Xn+1=√2xn求极限
因为{xn}收敛于a,所以任给ε>0,存在正整数N,当n>N时,|xn-a|