证明三角形三条中线任意两条相加大于第三条
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 10:29:17
1、证明三角形的三条角平分线交于一点:(1)由其中两个内角的交点向三条边作垂线段;(2)在根据角平分线的性质定理及逆定理就可获证.2、证明三角形的三条边的垂直平分线交于一点:(1)作两条边的垂直平分线
△ABC的三条中线AD,BE,CF交于O,求证AO/OD=BO/OE=CO/OF=2/1证明:设S△OBD=m,S△OBF=n,S△OCE=p则S△OBD=S△OCD=m,S△OCE=S△OAE=p,
设BC中点为D,AC中点为E,AD交BE于O,连接CO延长交AB于F向量AD=1/2(AC+AB)OD=1/3AD=1/6(AC+AB)=1/6(AC+CB-CA)CO=CD+DO=1/2CB+1/6
证明:在△ABC中,D为AC中点,E为AB中点,连结BD、CE,相交于点O,连结AO并延长交BC于点M,分别过点O、点A作BC的垂线段,垂足为H1、H2,连结DE、DM∵D、E为AC、AB中点∴DE‖
已知:△ABC中,AX,BY,CZ分别是BC,AC,AB边上的中线,求证:AX,BY,CZ相交于一点G,并且AG∶GX=2∶1X,Y分别是BC,AC的中点,所以XY=DE,所以,四边形DEXY为平行四
用向量法证明三角形ABC的三条中线交于一点P,并且对任意一点O有向量OP=1/3(向量OA+向量OB+OC向量)注意:要求用向量法,不使用坐标假设两条中线AD,BE交与P点连接CP,取AB中点F连接P
已知,在△ABC中,BD为AC中线,CE为AB中线,BD、CE交于点O,求证BC的中线AF过点O.延长AO交BC于F'作BG平行EC交AO延长线于G则因E为AB中点,所以O为AG中点连接GC,则在三角
问题即为:已知△ABC中各边中线分别为AD、BE、CF,AD交BE于点G求证:G点在直线CF上.析:这就转化为证明两个向量共线的问题,(省略向量符号)即CG=λCF.下面就是简单的向量转化了.PS:在
在三角形ABC中D为AB中点,E为BC中点所以BD等于二分之一BC(中位线定义)同理,CE等于二分之一BC所以BD等于CE又因为CD等于BE,BC等于BC所以三角形DBC全等于三角形ECB所以角ABC
△ABC中D,E为AB,AC的中点,作DM⊥BC,EN⊥BC,连结DE,BE,CD.∵DE‖BC,∴DM=EN在RT△DMC和RT△ENB中,∵DM=EN,CD=BE∴RT△DMC≌RT△ENB∴BN
先假设两条中线AD,BE交与P点连接CP,取AB中点F连接PFPA+PC=2PE=BPPB+PC=2PD=APPA+PB=2PF三式相加2PA+2PB+2PC=BP+AP+2PF3PA+3PB+2PC
你已经怎明了,AD,BE的交点G1,把AD分成2∶1.从而AD.CF的交点G2也把AD分成2∶1.[可以不必再证.下面*是证明],∴G1,G2重合.三个中线交于一点.*AG2=sAD=s(a-b/2)
已知,在△ABC中,BD为AC中线,CE为AB中线,BD、CE交于点O,求证BC的中线AF过点O.延长AO交BC于F'作BG平行EC交AO延长线于G则因E为AB中点,所以O为AG中点连接GC,则在三角
延长AO交BC于F'作BG平行EC交AO延长线于G则因E为AB中点,所以O为AG中点连接GC,则在三角形AGC中,OD是中位线BD平行GC所以BOCG为平行四边形F'平分BCF'与F重合BC的中线AF
可以使用塞瓦定理证明:塞瓦定理设O是△ABC内任意一点,AO、BO、CO分别交对边于D、E、F,则(BD/DC)*(CE/EA)*(AF/FB)=1假设DE是中点,则连接CO并延长交AB于F因为BD/
证明:已知,在△ABC中,BD为AC中线,CE为AB中线,BD、CE交于点O,求证BC的中线AF过点O.延长AO交BC于F'作BG平行EC交AO延长线于G则因E为AB中点,所以O为AG中点连接GC,则
重心http://baike.baidu.com/view/18274.htm重心定理http://baike.baidu.com/view/456227.htm?fr=ala0_1
设三角形三个点分别为点A(Xa,Ya),点B(Xb,Yb),点C(Xc,Yc).那么线段AB的中点M为((Xa+Xb)/2,(Ya+Yb)/2),并且可求出直线CM的方程(点M,点C已经给出,请自己写
命题是真命题,可如下证明:三角形ABC的两条中线分别是AM、BN,AM=BNAM、BN交于G,则GA=2/3AM,GB=2/3BN,GA=GB三角形ABM、三角形ABN全等,角A=角B这个三角形是等腰