证明xn=根号2 xn-1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 22:52:08
证明:因为0<x1<3所以x(n+1)<=[xn+(3-xn)]/2=3/2所以{xn}有界又x(n+1)=√[Xn(3-Xn)]>=√[Xn(3-3/2)]=√(3/2)xn
题目写了错吧,等号右边的3(1+xn)/1+xn不是约了吗
证明:∵X1>0,Xn+1=(1/2)(Xn+a/Xn)(n=1,2...,a>0)==>Xn>0(n=1,2...,)(应用数学归纳法证明)==>Xn+1=(1/2)(Xn+a/Xn)≥(1/2)(
x1=1,x2=2^(1/2),x3=2^(3/4),x4=2^(7/8),x5=2^(15/16),……,xn=2^{[2^(n-1)-1]/2^(n-1)}x(n)/x(n-1)=2^{[2^(n
x(n+1)=(xn+2)/(xn+1)(n>=0),X(n+2)=[X(n+1)]^2
x0>0xn是正数列x(n+1)=(xn+xn+1/xn^2)/3>=三次根号(xn*xn*1/xn^2)=1因此xn是有界的正数列x(n)>=1x(n+1)-xn=(-xn+1/xn^2)/3=[-
证明:∵x(0)>0且x(n+1)=[x(n)+a/x(n)]/2∴x(n)>0∴由均值不等式知[x(n)+a/x(n)]/2≥√a即x(n+1)≥√a∴数列{x(n)}有下界.(1)又x(n+1)/
证明:先用数学归纳法证xn
x(n+1)=1/2*(xn+1/xn)>=1/2*2=1xn=1时取等号即xn是大于等于1的数2(X(n+1)-Xn)=2X(n+1)-2Xn=Xn+1/Xn-2Xn=(1-Xn^2)/Xn
注意到x(n+1)>=2√(xn/2*1/xn)=√2,且x(n+1)-xn=1/xn-xn/2=(2-xn^2)/(2xn)
Xn+1=(√2*Xn)/(√Xn^2+2)Xn+1^2=2*Xn^2/(Xn^2+2)1/X(n+1)^2=(1/2)*(1+2/Xn^2)=1/2+1/Xn^2所以{1/Xn^2}为等差数列,公差
第一步两边平方是对的,再下去就.两边平方后,两边都颠倒分子分母,得:1/X[n+1]^2=(X[n]^2+2)/2X[n]^2即1/X[n+1]^2=1/2+1/X[n]^2所以{1/X[n]^2}为
先用数学归纳法证明,对任何x∈Z+,有0
当n=1时|X2-X1|=1/6成立当n≥2时易知0<Xn-1<1所以1+Xn-1<2所以Xn=1/(1+Xn-1)>1/2又有|Xn+1-Xn|=|1/(1+Xn)-1/(1+Xn-1)|=|Xn-
第一步两边平方是对的,再下去就.两边平方后,两边都颠倒分子分母,得:1/X[n+1]^2=(X[n]^2+2)/2X[n]^2即1/X[n+1]^2=1/2+1/X[n]^2所以{1/X[n]^2}为
楼主,你看看这个证明怎么样.
xn+2=根号下xn+1*xn你可以解释一下吗?再问:xn是个数列,xn+2=根号下(xn+1乘xn)
首先,Xn+1=1/2(Xn+a/Xn)>=1/2*2√a=√a则无论X1>0的值如何(所以可假定X1>√a),Xn(n=2,3...)的值都大于或等于√a如果X1=√a可以确定,Xn为常数列,其极限
X(n+1)-1=(Xn^2-2)/(2Xn-3)-1=(Xn-1)^2/(2Xn-3)Xn>3/2时X(n+1)-1>0X(n+1)>1X(n+1)-2=(Xn^2-2)/(2Xn-3)-2=(Xn