证明P(AB)-P(A)P(B)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 02:57:18
因为P(B)=1所以在条件A之下B发生的概率仍然为1,即P(B|A)=1P(AB)=P(A)P(B|A)=P(A)
前一步已经证明了:P(AB)(1-P(B))>P(B)(P(A)-P(AB))把它乘开:P(AB)-P(AB)P(B)>P(B)P(A)-P(B)P(AB)等式两侧消去:P(AB)P(B),即得.
根据抽屉原理,P(A)+P(B)-P(AB)=1-P(A∪B)所以P(AB)-P(A)-P(B)+1=P(A∪B)>=0即p(AB)>=p(A)+p(B)-1
由P(A+B)=P(A)+P(B)-P(AC)证明P(A+B+C)=P(A+B)+P(C)-P((A+B)C)=P(A)+P(B)-P(AB)+P(C)-P(AC+BC)=P(A)+P(B)+P(C)
a*b+a*c-b*c=0因为a
首先由定义P(A+B)=P(A∪B)A∪B=A+(B-AB),而A∩(B-AB)=∅(即不相容)于是有P(A∪B)=P(A+(B-AB))=P(A)+P(B-AB)又AB
P(A|B)表示:在发生事件B,A事件的概率的基础.P(A∩B)/P(B)表示:A和B的概率的事件B的概率分发生不同的事件时.
做的比较仓促,如果有细节问题请见谅啦
设A单独发生的概率为a,B单独发生的概率为b,AB同时发生的概率为c,AB同时不发生的概率为s,则a+b+c+s=1P(A)=a+cP(B)=b+cP(AB)=c原式左侧=|c-(a+c)(b+c)|
证明:分析法,等价变一下:左1=1-(1-P(A))-(1-P(B))=P(A)+P(B)-1
P(AUB)P(AB)≤P(A)P(B)等价于[P(A)+P(B)-P(AB)]P(AB)≤P(A)P(B)等价于[P(A)+P(B)-P(AB)]P(AB)-P(A)P(B)≤0等价于P(A)P(A
P(AB+AB+AB)=P(ABUABUAB)=P(AB)P(AB)=P(A)+P(B)-P(AB)所以,证明成立
P(B(A+非B))=P(AB+B非B)由于B非B属于不可能时间故为0原式=P(AB)
这是概率和的证明吗?应该是p(A+B+C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC)...
=P(ab)/P(b).即有:P(ab)/P(b)=1,即有P(b)=P(ab).(1)而P(非b|非a)=P[(非b)(非a)]/P(非a)={1-P[非[(非b)
得保证ab独立的吧
根据概率的乘法原理有:P(AB)=P(B|A)P(A)=P(B)即两事件A、B同时发生的概率为事件A发生后B事件发生的概率乘以事件A发生的概率.而本题中P(A)=1,即A事件必定发生;则AB事件同时发
p(a∪b)应该是小于等于1,-p(a∪b)大于等于-1,p(a)+p(b)-p(a∪b)≥0.5,即p(ab)≥0.5.p(a)事件a发生的概率,p(b)事件b发生的概率,p(a∪b)事件a或者b发
因为概率是一个规范测度,所以满足测度的性质,因为AB∪(A-B)=A,且AB∩(A-B)=空集所以P(AB)+P(A-B)=P(A)所以P(AB)=P(A)-P(A-B)当然也可以直接从概率的角度去证
由P(A+B)=P(A)+P(B)-P(AC)证明P(A+B+C)=P(A+B)+P(C)-P((A+B)C)=P(A)+P(B)-P(AB)+P(C)-P(AC+BC)=P(A)+P(B)+P(C)