证明ATA=0则A=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 12:15:45
证明ATA=0则A=0
设A是m*n实矩阵,若r(ATA)=5,则r(A)=

(A)=5因为r(ATA)=r(A)证明如下:若ATAx=0则xTATAx=0则(Ax)TAx=0就是说Ax这个向量的内积是0从而这个向量是0即Ax=0这说明r(A)=r(ATA)综合上述两方面R(A

证明:对任意实矩阵A,有r(ATA)=r(AAT)=r(A)

如果你知道奇异值分解,那么结论显然.如果不知道就这样做:若r(A)=k,那么可以用Gauss消去法把A消成梯阵,即CA=U,其中C是行初等变换的乘积,U仅有前k行非零且线性无关.于是CAA^TC^T=

一道线性代数题:设a是n维向量,ata=1,证明E-aat是对称幂等矩阵,且不可逆

你那t是转置吧,这里我们换个符号,用a'表示a的转置.(E-aa')=(E'-(aa')')=E-(a')'a'=E-aa'所以E-aa'是对称的而(E-aa')²=E²-2Eaa

关于方阵证明1.设A是N阶实方阵(1)如果A=AT(转置)且A^2=0,证明A=0(2)如果AAT=0或ATA=0,则A

1.⑴.A²=AA=AAT=0.AAT的(i,i)元=ai1²+ai2²+……+ain²=0aij是实数.aij²≥0.只可aij=0,A=0⑵,⑴中

设A为mxn实矩阵,证明秩(AtA)=秩(A)

只要证明方程组A'Ax=0和Ax=0同解(记A'=At)若x是Ax=0的解,则显然x也是A'Ax=0的解若x是A'Ax=0的解则x'A'Ax=x'0=0(Ax)'(Ax)=0||Ax||=0Ax的范数

设A为mxn实矩阵,AtA为正定矩阵,证明线性方程AX=0只有零解 急

设A为mxn实矩阵,A^tA是正定矩阵,所以|A^tA|>0,从而(A^tA)的秩是n从而方程(A^tA)X=0只有零解.下面只要证方程(A^tA)X=0与方程AX=0有相同的解即可.1)设α设是方程

证明如果A是s*n阶矩阵,则AtA特征值均为非负实数

(该结论仅限于实数范围,复数的需要把转置改成共轭转置)由于AtA是对称矩阵((AtA)t=AtA)),而对称阵是半正定的当且仅当它的特征值均为非负实数,从而只需证明这个矩阵是半正定的,那么任取n维向量

已知矩阵A为n元行向量 证明(ATA)X=O有非零解 T为角标

需要n>1的条件,n=1时除非A=0.如果学过线性代数,只要看到A^TA是秩不超过1的矩阵就行了.不过这题目即使中小学生也能做,前提是知道向量的乘法规则,只要证明AX=0有非零解.如果A只有一个分量A

ATA能得到A=0,那么,矩阵AAT=0能否得到A=0?为什么?

A是什么?原题是什么再问:A是矩阵,书上不是有一条定理是A=0的充要条件是ATA=0的么?(AT表示A的转置)AAT=0能得到A=0么?再答:有这定理?!不过可以由这个推出来:若A是实矩阵,则r(A)

A是一个mxn矩阵,列向量x是实数,证明Ax=0与ATA=0同解

方程(1):Ax=0,方程(2):ATAx=0首先,如果x1是(1)的解,那么它肯定也是(2)的解,因为将其代入(2):ATAx1=AT(Ax1)=AT*0=0其次证明(2)的解也是(1)的设x1是(

m×n阶矩阵,秩为n,则A×(A)T X=0必有非零解是对么?有这个结论r(A)=r(AT)=r(AAT)=r(ATA)

“A×(A)TX=0必有非零解是对么”不对,反例:令A=E,E是n阶单位阵

线性代数 R(A)=R(ATA) 如何证明?

构造两个齐次线性方程组:(1)Ax=0,(2)(ATA)x=0如果这两个方程组同解,则两个方程组的系数矩阵有相同的秩,R(A)=R(ATA)=n-基础解系中向量个数.这个很好理解对吧,《线性代数》的基

线性代数第五版习题五第24题为什么Aa=aaTa=a(aTa)=(aTa)a?为什么aaT=aTa?

记住:当a=(a1,a2,.an)T列向量那么aTa是一个常数(常数当然可以随便改变位置),而aaT是一个n阶方阵.

这几道矩阵题怎么解1.设A为m×n实矩阵,若ATA=0,则A=02.设A= ( -11 4 ),求(A+E)(E-A+A

A的转置乘以A那么,所得矩阵对角线上是A中的元素平方和相加,因为矩阵是零矩阵,所以每个元素必须为零,你可以用个2*2的矩阵试下.首先知道,A^2=E,按照将矩阵A和E看成数,可用公式知,原式=A^7-

A为可逆阵,则ATA等价于A是否正确?请证明

A可逆det(A)≠0det(A^TA)=det(A)^2≠0A^TA可逆同阶的可逆矩阵当然是等价的

正交矩阵是否能证明对称,有一题如下 对于任意正交矩阵A,AAT=ATA=E,证明|E-A^2|=0.

很显然,题目本身是错的,你的“证明”也是错的给你一个反例0-110

设A为m*n阶实矩阵,X为(0,A;AT,0)的非零特征值,证明X^2为ATA的特征值

经济数学团队帮你解答,有不清楚请追问.满意的话,请及时评价.谢谢!