证明,若正项级数un
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 11:21:21
反证法:若级数(un+vn)收敛,则级数(vn)=级数(un+vn-un)=级数(un+vn)-级数(un)收敛.矛盾.
用比较判别法证明.经济数学团队帮你解答.请及时评价.
(un+vn)^2=(un)^2+2unvn+(vn)^2《(un)^2+2|unvn|+(vn)^2《2[(un)^2+(vn)^2]级数∑(un)^2∑(vn)^2都收敛,所以级数2[(un)^2
正项级数Sn-S(n-1)=un>0,即Sn>S(n-1),所以un/Sn^2
你好!lim(n→+∞)Un^(1/n)=lim(n→+∞)n^(1/n)/lnn=lim(n→+∞)1/lnn=0所以原级数收敛
你的题目出错了,等号应在在后半部分!以下部分是积分判别法证明:关于级数1/n(lnn)^p有个类似p级数的性质:当p>1时,级数收敛;当p≤1时,级数发散.画出函数1/x(lnx)^p(x>2)的图象
因为limn^2*un存在,于是n^2*un有界,即存在M>0,使得|n^2*un|
正项级数:∑(an-Un):(an-Un)≤(Vn-Un)因为正项级数∑(Vn-Un)收敛(两个收敛级数的差)由比较判别法正项级数:∑(an-Un)收敛.∑an=∑[(an-Un)+Un])收敛:(两
由于当n趋于无穷时,un趋于0,vn趋于0,因此当n充分大时有0
你有问题也可以在这里向我提问:
∵limUn=0lim(Un^a/un)=lim(un^(a-1))=0正级数∑Un收敛,则∑Un^α(α>1)收敛
这道题考察级数的两个性质:1.任意加上或去掉级数的有限想不改变它的收敛性.2.若级数∑an收敛,级数∑bn收敛,则级数∑(an+bn)也收敛.通项拆为两部分Un和U(n+1),已知∑Un收敛,而∑U(
设NUn再问:高手,下边也写出来呗,要步骤,这部分没看呢,要考试啦!再答:∑1/N^2就是收敛的啊
参考例题:证明:如果正级数∑Un收敛,则∑Un^α(α>1)收敛答案:∵limUn=0lim(Un^a/un)=lim(un^(a-1))=0正级数∑Un收敛,则∑Un^α(α>1)收敛
在证明这个命题之前,我们先介绍一个关于正项级数的性质:若发散的正项级数∑Qn的一般项Qn单调递减且有极限limQn=0,则对于任意的ε>0和正整数n,必存在整数p≥0使得∑Qi>ε(注:此处求和指标中
1-cos(a/根号n)与a/2n等价.因此,当a=0时,当n趋于无穷大时,通项不趋于零,故级数不收敛.当a不等于0时,因∑a/2n,不收敛,所以级数不收敛.综合,可得,级数不收敛.
这是错的.比如Un=1/n
因为级数收敛,设ΣUn=A.n趋向于无穷大时可以取到所有的2n-1的数值.所以ΣU2n-1=A.得证.
是否差条件?级数Vn绝对收敛?再问:不是,就只有收敛。请问下,能证明级数Un收敛吗?再答:Un=1,级数Un-Un-1收敛Vn=(-1)^n/n,级数Vn收敛UnVn条件收敛再问:不明白,不过能证明级
只要举出反例即可.令U(n)=(-1)^n/ln(n+1)(+1是为了保证n=1时有意义),则U(n)是趋于零的交错数列,所以由Leibnitz判别法知∑U(n)收敛.(-1)^n*U(n)/n=1/