设随机变量X服从参数λ>0的指数分布,求随机变量Y=e^λ*X的概率密度函数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/21 02:18:21
依题意可以得到λ=3,;所以E(X)=D(X)=3;而D(X)=E(X^2)-E(X)^2=3;所以E(X^2)=E(X)^2+D(X)=12;
因为随机变量ξ,η相互独立,所以E(ξη)=E(ξ)E(η)而E(ξ)=1/λ,E(η)=np所以E(ξη)=np/λ
(1)由已知,f(x)=1,(0
如图,有不清楚请追问.满意的话,请及时评价.谢谢!
E(X^2)=E(X^2-X+X)=E[X(X-1)+X]=E[X(X-1)]+E(X)=∑(k=0→∞)k(k-1)T^ke^(-T)/k!+∑(k=0→∞)kT^ke^(-T)/k!=∑(k=2→
参数为1,就是λ为1
解法的要点如下图,先找出分布函数的关系.经济数学团队帮你解答,请及时采纳.谢谢!
因为随机变量服从X~(2,P)则,P(ξ≥1)=1-=a(a你没给出),可以求出p;那么,P(η≥1)=1-
F(x)=λ^ke^(-λ)/k!由P{X=0}=1/2得e^(-λ)=1/2λ=ln2则F(x)=(ln2)^k/2(k!)P{X>1}=1-P{X
X服从参数λ为的指数分布,则:EX=1/λ,X有分布函数:F(x)=1-e^(-λx),x>=0;于是P(X>EX)=1-P(X
经济数学团队帮你解答,有不清楚请追问.请及时评价.
X的分布函数:F_X(x)={1-e^-λx,x>0{0,x
fx(x)=e^-x,(x>=0)所以Fy(y)=P(Y=e^x
由题设,X服从参数为λ的指数分布,知:DX=1λ2,λ>0,于是:P{X>DX}=P{X>1λ}=∫+∞1λλe−λxdx=−e−λx| +∞1λ=1e.
P(X>1)=e^(-λ)=e^(-2),则λ=2
(1).f(x)=3e^(-3x),x>0;f(x)=0,其他.y1时,FY(y)=P(Y
设u=x+y,v=x/(x+y),算u,v的联合分布之后再求边际分布.
P(Y=0)=P(X>1)=e^(-1)P(Y=1)=P(X
x再问:跟[X](X取整)没有关系吗?你的解答没有体现取整再答:x
/>因为X服从参数为(2,p)的二项分布,且P{X≥1}=59,所以:P{X=0}=1-P{X≥1}=49,即:C02P0(1-P)2=(1-P)2=49,求解得:P=13,因为Y服从参数为(3,p)