设随机变量X,Y相互独立同服从正态分布N(0,1),求Emin{X,Y}

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 23:23:54
设随机变量X,Y相互独立同服从正态分布N(0,1),求Emin{X,Y}
设两个随机变量X,Y相互独立,且都服从均值为0、方差为12

令:Z=X-Y,则由于X,Y相互独立,且服从正态分布,因而Z也服从正态分布,且EZ=EX-EY=0-0=0,DZ=D(X-Y)=DX+DY=12+12=1,因此,Z=X-Y~N(0,1),∴E|X-Y

设随机变量X,Y相互独立,且服从[0,1]上的均匀分布,求X+Y的概率密度.

不太清楚你的意思,是不知道积分区域怎么出来的?还是不知道怎么积分?其实就是左右两块区域求积分和,见下图再问:不好意思没说清楚,是不知道怎么积分的再答:就是图中黑色区域,左边矩形和右边梯形的积分和。事实

设随机变量X与Y相互独立,并且均服从U(0, θ),求E(max{X,Y})

这是双变量函数的概率分布,先求出概率分布函数,再求导就得到密度函数.我明白你的意思,你是想让别人帮你做出来.我提供思路.你从分布函数出发,首先求z=max(x,y)的分布函数,它等于p(Z再问:这个混

设X,Y为相互独立的随机变量,且均服从N(0,1),求E[min(X,Y)].

Z=min(X,Y),Fmin(z)=1-{1-FX(z)}{1-FY(z)}.对Fmin(z)关于z求导,则求出min(X,Y)的概率密度.那么求E[min(X,Y)]根据公式即可!还有一种解法:Z

设随机变量X ,Y分别服从(0-1)分布,证明:X,Y相互独立等价于X,Y不相关

设X,Y的分布律分别为X01Y011-pp1-qq(1)X,Y独立,那么他们一定不相关(这是书上的结论,只要独立就一定不相关)(2)X,Y不相关,则COV(X,Y)=0,即E(XY)=E(X)E(Y)

设随机变量X,Y相互独立,且都服从[-1,1]上均匀分布,求X,Y的概率密度

你.有我当年风范f(x)={1/2-1再问:0,其他是什么意思啊直接在下面一行写就行了啊?再答:大括号把两行扩起来,就像我写的那样,扩两行,我这只扩了一行再问:能不能有点过程,我在考试啊,不能直接这样

设随机变量X,Y相互独立,且都服从两点分布B 则P(X=Y)=

P(X=Y)=P(X=0)P(Y=0)+P(X=1)P(Y=1)=1/9+4/9=5/9如有意见,欢迎讨论,共同学习;如有帮助,再问:为什么这么算啊?再答:根据独立性。书上讲更全面一些,建议您看书。

设随机变量X和Y相互独立,且服从同一分布,证明P(X小于等于Y)=1/2

X,Y互相独立设X的密度函数为f(x),Y的密度函数为f(y)它们的联合密度函数为f(x,y)=f(x)f(y)f(y,x)=f(y)f(x)=f(x,y)f(x,y)关于y=x对称P(X

设随机变量X与Y相互独立,且服从同一分布,X的分布律为

由于:P(X=0,Y=0)=P(X=1,Y=0)=P(X=0,Y=1)=P(X=1,Y=1)=1/4.P(Z=1)=P(X=1,Y=0)+P(X=0,Y=1)+P(X=1,Y=1)=3/4.P(Z=0

设随机变量x,y相互独立 都服从N(0,1) 计算概率P(X^2+Y^2

随机变量x,y相互独立都服从N(0,1)则f(x,y)=fX(x)fY(y)=1/(2π)e^(-x²-y²)P(X^2+Y^2

设X与Y相互独立且服从N(0,0.5),证明X-Y是N(0,1)随机变量

因为X,Y独立的正太分布,所以他们的线性组合仍是正态分布D(X-Y)=DX+DY=1E(X-Y)=EX-EY=0所以有如题结果

设X,Y为相互独立的随机变量,且均服从N(0,1),求E[min(X,Y)]

Z=min(X,Y),Fmin(z)=1-{1-FX(z)}{1-FY(z)}.对Fmin(z)关于z求导,则求出min(X,Y)的概率密度.那么求E[min(X,Y)]根据公式即可!还有一种解法:Z

设X与Y是相互独立随机变量,X服从均匀分布U[0,1/5].

1、概率密度f(x,y)=f(x)*f(y)=25e^(-5y)0

设x,y是相互独立同服从几何分布的随机变量,即它们共同的分布率为p(x=k)=pq^(k-1),

解答过程如图,写出Z1,Z2取值与X,Y取值的关系就可计算了.经济数学团队帮你解答,请及时采纳.谢谢!

相互独立随机变量X,Y,服从正态分布N(0.1)

1fX(x)=(1/√2π)e^(-x^2/2)fY(y)=(1/√2π)e^(-y^2/2)因为x,y独立,所以联合概率密度所以fXY(x,y)=fX(x)fY(y)=(1/2π)e^[-(x^2+