设随机变量x y 相互独立.x~N(μ,σ^2)y~(-μ,3σ^2)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 17:16:06
设随机变量x y 相互独立.x~N(μ,σ^2)y~(-μ,3σ^2)
设X和Y是相互独立的随机变量

var(z)=Var(2x-y)=4var(x)-4cov(x,y)+var(y)=16+0+9=25标准差为开平方5

如图 设xy 是两个相互独立的随机变量 求得是D(x+y)

如图(点击可放大):Y的方差,我是用最基本的积分(分部积分)做的,也可以用指数分布的性质做:Y是 λ=1的指数分布,所以它的期望:E(Y)=1/ λ=1它的方差:D(Y)=1/&n

设X,Y为相互独立的随机变量,且均服从N(0,1),求E[min(X,Y)].

Z=min(X,Y),Fmin(z)=1-{1-FX(z)}{1-FY(z)}.对Fmin(z)关于z求导,则求出min(X,Y)的概率密度.那么求E[min(X,Y)]根据公式即可!还有一种解法:Z

设随机变量x~N(0,1),N(1,2),且x,y相互独立,则x-2y=?

首先X-2Y还是正态分布而E(X-2Y)=E(X)-2E(Y)=0-2=-2D(X-2Y)=D(X)+(-2)²D(Y)=1+4×2=9所以X-2YN(-2,9)

设随机变量X~N(-1,22),N(-2,32),且X,Y相互独立,则X-Y~()

正态分布添加剂,XY也是正常E(XY)=EX-EY=1D(XY)=DX+DY=13XYN(113)

设随机变量X,Y相互独立,N(1,4),b(10,0.4),则D(2X-Y)=?

D(X)=4D(Y)=10*0.6*0.4=2.4D(2X-Y)=4D(X)+D(Y)=16+2.4=12.4如有意见,欢迎讨论,共同学习;如有帮助,

设随机变量X~N(-3,1),(2,4),且X与Y相互独立,则X-2Y+11~

E(X-2Y+11)=(-3-2*2+11)=4D(X-2Y+11)=D(X)+4D(Y)=17N(4,17)

1.设随机变量X Y 相互独立,同分布与N (0,0.5),求E(| X - Y |)

X与Y相互独立,且都服从正态分布N(0,0.5)-->U=X-YEU=EX-EY=0DU=0.5+0.5=1U~N(0,1)E|X-Y|=E|U|为正态分布的一阶绝对中心矩=(2/pi)^(1/

设随机变量X~N(-1,2),N(2,7),且X与Y相互独立,则D(X+Y)=

解;N(-1,2),N(2,7)所以DX=2,DY=7因为x与y相互独立所以D(X+Y)=DX+DY=2+7=9

设x和y是相互独立的两个随机变量,且x服从(-1,2)上的均匀分布,y服从y~N(1,4)则D(XY)=

解题思路了讲到这后面的积分自己先积一积不懂追问再问:谢谢,明白了,但是木有更简单一点的么~~~~~再答:放心~是没有捷径滴而且这样做计算量不算很大,耐心一点就行了

设随机变量X~N(-1 4),N(-2 9) ,且XY相互独立,则x-y~( )

正态分布具有可加性,X-Y也是正态分布E(X-Y)=EX-EY=1D(X-Y)=DX+DY=13X-Y~N(1,13)

设随机变量X和Y相互独立,且X~N(3,4),(2,9),则Z=3X-Y~

3X-Y还是正态分布利用公式E(aX+bY)=+aE(X)+bE(Y)D(aX+bY)=+a²D(X)+b²D(Y)

设随机变量XY相互独立X为标准正态分布Y为【0.1】上均匀分布求P{X>Y}

所给题中ξ服从标准正态分布,均值miu为0,方差sigma为1,根据正态分布性质有:P{1

设X与Y相互独立且服从N(0,0.5),证明X-Y是N(0,1)随机变量

因为X,Y独立的正太分布,所以他们的线性组合仍是正态分布D(X-Y)=DX+DY=1E(X-Y)=EX-EY=0所以有如题结果

设随机变量X与Y相互独立,证明:D(XY)〉=D(X)D(Y).

知道x^2与y^2相互独立.D(xy)-D(x)D(y)=E(x^2)E(y)^2+E(y^2)E(x)^2-E(x)^2E(y)^2-E(xy)^2=D(x)E(y)^2+D(y)E(x)^2>=0

设随机变量X,Y相互独立,且服从[0,]上的均匀分布,求XY的概率密度

求导就得书上的答案.再问:不好意思时间过去有点长忘记题目了,不过你的那个p(x

设随机变量XY相互独立,都服从(0.1)的均匀分布,求z=x+y的密度函数.

fZ(z)=∫(-∞→+∞)fX(x)fY(z-x)dx(1)z<0fZ(z)=∫(-∞→+∞)fX(x)fY(z-x)dx=0(2)0≤z<1fZ(z)=∫(0→z)1·1dx=z(3)1≤z<2f

相互独立随机变量X,Y,服从正态分布N(0.1)

1fX(x)=(1/√2π)e^(-x^2/2)fY(y)=(1/√2π)e^(-y^2/2)因为x,y独立,所以联合概率密度所以fXY(x,y)=fX(x)fY(y)=(1/2π)e^[-(x^2+