设连续型随机变量X的均值EX=-1,方差DX=3

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 18:14:45
设连续型随机变量X的均值EX=-1,方差DX=3
设连续型随机变量x的分布函数为f(x)={0,x

X服从[0,8]上均匀分布,E(X)=4,D(X)=64/12=16/3再问:麻烦大神能不能将解题过程写的详细点再答:常用分布,[a,b]均匀分布,E(X)=(a+b)/2,D(X)=(b-a)^2/

设连续型随机变量X的概率密度为F(x)=

E(X)=∫(0~1)x*2(1-x)=2(1/6)=1/3E(X²)=2∫(0~1)x²(1-x)=2(1/12)=1/6D(X)=E(X²)-E(X)²=1

设连续型随机变量X的概率密度

∫(-∞,+∞)f(x)=Aarctgx|(0,+∞)=Aπ/2由于是概率函数,应有Aπ/2=1,解得A=2/πP{x≤1}=∫(-∞,1)f(x)=2/πarctgx|(0,1)=(2/π)×(π/

设连续型随机变量X的概率密度为f(x)={2(1-x),0

EZ=∫ZP(x)dx=∫,e^x2(1-x)dx=2∫,e^xdx-∫,xe^xdx,这个在0,1之间积分即可EZ^2=∫Z^2P(x)dx=∫e^2x(2-2x)dx在(0,1)上球定积分DZ=E

设连续型随机变量X的概率密度为f(x)={Ax平方,0

分布函数F(x)=积分(从负无穷到x)f(t)dt.F(正无穷)=1=>积分(从0到1)Ax^2dt=1A*1^3/3-A*0^3/3=1A=3.

设连续型随机变量,变量X的密度函数为f(x)={cx,0

∫(0~2)cx=1c(4/2)=1c=1/2连续型随机变量任意一点概率都为0P(X=2)=0P(0

设离散型随机变量X的数学期望为EX,方差为DX,试证明:DX=EX^2-(EX)^2

证明:D(X)=E{[X-E[X]]^2}(方差的定义)=E{X^2-2*X*E[X]+E[X]^2}=E[X^2]-E{2*X*E[X]}+E{E[X]^2}=E[X^2]-2*E[X]*E[X]+

设连续型随机变量X的概率密度为f(x)=ax+2,0

对f(x)=ax+2积分,得0.5ax^2+2x,把上下限0与1代入得,F(x)=0.5a+2=1a=-2对xf(x)=ax^2+2x积分,得1/3*ax^3+x^2,把上下限0与1代入得,E(x)=

设连续型随机变量X的分布函数为,

连续变量.分布函数是连续的.在1和-1处连续.得到a-b*π/2=0和a+bπ/2=1即可解出a.

设f(x)为连续型随机变量X的概率密度,并已知EX=2,且s(负无穷到正无穷)(x^2+2x-10)f

s(负无穷到正无穷)(x^2+2x-10)f(x)dx=E(x^2)+2Ex-10=0所以E(x^2)=6所以DX=E(x^2)-(EX)^2=2所以D(1/2X-1)=DX/4=1/2

设连续型随机变量x的分布函数为F(x)=0.x

F(1)=A=1A=1fx(x)=1,x属于(0,1)E(x)=1/2.如有意见,欢迎讨论,共同学习;如有帮助,

设连续型随机变量X的分布函数为F(X)=0,X

A=1因为当x趋于零时,A可以是任意一个常数,是不能确定的.

设连续型随机变量X的分布函数为(1)确定常数k,b的值(2)求EX,3求DX

(1)连续型随机变量的分布函数必然连续,由此可考虑分布函数在x=0及x=π处的连续性.要连续,必须左右极限先得相等,于是b=0,kπ+b=1,即k=1/π,b=0.(2)根据(1)的结果可知,这是区间

连续型随机变量计算设连续型随机变量X的分布函数为0,X

第二种方法是,先算密度函数,就是对分布函数求导,见图片再问:f(x)已经是F(x)的导数了为什么还要求导呢?没明白再答:题目中给出的是分布函数F(x),没有给出密度函数f(x)啊

设连续型随机变量X的概率密度为f(x)=x/2 0

(0,2)∈[-1,5]P{-1再问:那P{-1

设连续型随机变量X的概率密度为 f(x)={-2x+2,0

(1)1=∫[0,k](-2x+2)dx=-k^2+2kk=1(2)F(x)=0x