设过曲线y=x²(x≧0)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 06:58:39
设过曲线y=x²(x≧0)
设曲线y=y(x)在其点(x,y)处的切线斜率为4x^2-y/x,且曲线过点(1,1),求该曲线的方程.

手机没法输入公式,方法如下.对斜率求x的不定积分,代入(1,1)求得待定常数.得解再问:对斜率怎么求不定积分呢再答:斜率的表达式y=f(x)即y'=4x^2-y'/x',得y‘=4x^2/(1+1/x

设曲线y=y(x),在其上点(x,y)处的切线斜率为2xy,并且过点(0,1),求该曲线的方程

设曲线方程为y=a+kx,其中k是斜率把点(0,1)带入得1=a再把斜率2xy和a=1同时带入方程y=a+kx得y=1+2xy*x整理得:y=1/1-2x^2

设函数y=f(x)在曲线上的切线斜率为3x^2-2x,且曲线过(-1,1),求该函数方程

因为y=f(x)在曲线上的切线斜率为3x^2-2x,则设曲线方程为y=x^3-x^2+C(其中C为常数)将(-1,1)点代入,得C=3,所以曲线方程为y=x^3-x^2+3

设曲线过(0,1)且其上任意点(x,y)的切线斜率为2x,则该曲线的方程是多少

根据题意,这个曲线方程的导数是y'=2x,积分可以求得其方程为y=x^2+C,C为常数;代入(0,1),得到C=1,所以y=x^2+1

已知函数f(x)=x^3-x,设a>0,若果过点(a,b)可作曲线y=f(x)的三条切线,证明:-a

假设切点为(m,m³-m),那么可得到方程(m³-m-b)÷(m-a)=3m²-1.上诉方程可化简为2m³-3am²+a+b=0,因为要保证这个方程有

函数和曲线问题设函数f(x)=x²+ax+2,g(x)=e×(2x+b),若曲线y=f(x)和y=g(x)都过

我给你说个思路 曲线y=f(x)和y=g(x)都过点p(0,2)  所以将P点带入

设函数y=y(x)是由方程cos(xy)=x+y所以确定的隐函数,求函数曲线y=y(x),过点(0,1)的切线方程

cos(xy)=x+y两边微分,得dx+dy-sin(xy)*(x*dy+y*dx)=0dx(1-ysin(xy))+dy(1-xsin(xy))=0dy/dx=(ysin(xy)-1)/(1-xsi

设函数y=y(x)是由方程cos(xy)=x+y所确定的隐函数,求函数的曲线y=y(X)过点(0,1)的切线方程

令F(x,y)=cos(xy)-x-yF'(x,y)x=-ysin(xy)-1对x求偏导F'(x,y)y=-xsin(xy)-1对y求偏导切线方程为:(x-0)/F'(x,y)=(y-1)/F'(x,

1.设曲线y=f(x)过原点,且该曲线在点(x,f(x))处的切线斜率为-2x,则lim[f(-2x)/x^2]

1、条件为f(0)=0,且f'(x)=-2x,于是limf(-2x)/x^2=lim-2f'(-2x)/(-2x)=lim4x/(-2x)=-2.2、F(x)=f'(x)/e^x,F'(x)=(f''

曲线y=f(x)在点x处的切线斜率为2x-1,且曲线过点(0,1),则曲线方程是什么

由题意可知f(x)的导数方程为2x-1故设f(x)=x^2-x+C又因曲线过点(0,1)代入求得f(x)=x^2-x+1

设曲线y=f(x)上任一点(x,y)处切线斜率为y/x加上x的平方, 且该曲线过点(1,1/2) 求曲线y=f(x)

已知dy/dx=f'(x)=y/x+x²,则有dy/dx-y/x=x²对应的齐次线性微分方程为dy/dx-y/x=0变形,得dy/y=dx/x两边积分,得Ln丨y丨=Ln丨x丨+c

设L:y=y(x)在点(x,y)处的切线的斜率是k=1+(2y+1)/x,且曲线L过点(1,0).试求曲线L的方程.

设L方程式Y=AX平方+bX+C因为过1,0所以a+b+c=0切线的斜率是k=1+(2y+1)/x能得到y’=1+(2y+1)/x由于y'=2ax+b所以1+(2y+1)/x=2ax+b所以b=1和(

设函数y=f(x)在点x处的切线斜率为lnx/x,则该曲线过点(e,-1)的方程?

由题意,f'(x)=lnx/x,∴f(x)=1/2(lnx)^2+C又曲线过点(e,-1)∴C=-3/2即曲线方程为f(x)=1/2(lnx)^2-3/2

设函数f(x)=x+ax^2+blnx,曲线y=f(x)过P(1,2),且在P点处的

f(x)=x+ax^2+blnxf'(x)=1+2ax+b/x又有f(1)=1+a+bln1=1+a=0,得到a=-1f'(1)=1+2a*1+b/1=2,得到b=3.设g(x)=f(x)-2x+2=

设平面区域D由曲线y=1x

区域D的面积为:SD=∫e20dx∫1x0dy=∫e211xdx=lnx|e21=2,所以(X,Y)的联合概率密度为:f(x,y)=12  (x,y)∈D0