设级数un和级数vn都收敛
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 14:26:55
不确定,可能收敛也可能发散,以un+vn为例,举最简单的例子,设un=vn=1/n,它们都发散,un+vn=2/n也发散,设un=1/n,vn=-1/n,它们也都发散,但un+vn=0收敛.
若正项级数un收敛,则un收敛到0,即存在N,当n>N时,un
反证法:若级数(un+vn)收敛,则级数(vn)=级数(un+vn-un)=级数(un+vn)-级数(un)收敛.矛盾.
用比较判别法证明.经济数学团队帮你解答.请及时评价.
(un+vn)^2=(un)^2+2unvn+(vn)^2《(un)^2+2|unvn|+(vn)^2《2[(un)^2+(vn)^2]级数∑(un)^2∑(vn)^2都收敛,所以级数2[(un)^2
正项级数:∑(an-Un):(an-Un)≤(Vn-Un)因为正项级数∑(Vn-Un)收敛(两个收敛级数的差)由比较判别法正项级数:∑(an-Un)收敛.∑an=∑[(an-Un)+Un])收敛:(两
由于当n趋于无穷时,un趋于0,vn趋于0,因此当n充分大时有0
an,bn收敛知an->0,bn->0an再问:但这不是正项级数再答:和正项级数有什么关系?你哪没看懂再问:an的平方怎么收敛的再答:老师给了个反例反例a_n=b_n=(-1)^n/n^0.1,刚才默
你有问题也可以在这里向我提问:
这道题考察级数的两个性质:1.任意加上或去掉级数的有限想不改变它的收敛性.2.若级数∑an收敛,级数∑bn收敛,则级数∑(an+bn)也收敛.通项拆为两部分Un和U(n+1),已知∑Un收敛,而∑U(
对于正项级数来说是成立的,但对于任意项级数来说则不一定成立了再问:能举个例子吗?再答:比如说级数un=(-1)^n/√n显然交错级数收敛而vn=(-1)^n/√n+1/n易知limvn/un=1但vn
由 ∑(n>=1)u(n)=s,可得 ∑(n>=1)[u(n)+u(n+1)] =∑(n>=1)u(n)+∑(n>=1)u(n+1) =2s-u(1).再问:(Un+Un+1)=(u1+u
不能.考虑数列u(n)=1,v(n)=1,符合要求,但sigma(min(un,vn))显然发散.考虑数列u(n)为0,-1,0,-1,...,而数列v(n)为-1,0,-1,0,...,符合要求,但
应该等于n乘n-1也就是等于(a-u)乘(n剪1)答案就是a乘u再问:可我这边答案写着是U1-a,就是没有步骤再答:把你的QQ号给我,我和你讲再问:1309288676
这是错的.比如Un=1/n
∑(un-u(n-1))=(u1-u0)+(u2-u1)+(u3-u2)+(u4-u3)+...=un-u0=a-u0其中u0为数列的首项再问:�Ǹ�Ҫ�DZ�ɡ�Un-U(n��1)��再答:∑Un-
是否差条件?级数Vn绝对收敛?再问:不是,就只有收敛。请问下,能证明级数Un收敛吗?再答:Un=1,级数Un-Un-1收敛Vn=(-1)^n/n,级数Vn收敛UnVn条件收敛再问:不明白,不过能证明级
不一定,比如Un=-/n,Vn=1/nWn=1/n²再问:第一个怎么证明再答:0
只要举出反例即可.令U(n)=(-1)^n/ln(n+1)(+1是为了保证n=1时有意义),则U(n)是趋于零的交错数列,所以由Leibnitz判别法知∑U(n)收敛.(-1)^n*U(n)/n=1/
lim(n->无穷)un=S=lim(n->无穷)u(n+1)lim(n->无穷)(u(n+1)-un)=0