设矩阵A与P都是n阶矩阵,且A为对称矩阵,证明PAP也是 对称矩阵
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 06:50:47
A^-1表示A的逆,^表示后面的是指数.由A^-1ABA=BA可知AB与BA相似,故AB与BA有相同的特征值.
证:因为正交矩阵的行列式是正负1再由|AB|
证明:因为A是对称矩阵所以A'=A.所以(B'AB)'=B'A'(B')'=B'AB所以B'AB是对称矩阵#
(为方便,A的转置为A‘)设x1x2.xn为A的特征值a1,a2,...,an对应的特征向量,记X=[x1,x2,...,xn]其是可逆的则有X^(-1)AX=diag(a1,a2,...,an)又有
存在可逆矩阵M使得M'AM=E此时M'BM仍然对称,从而存在正交矩阵Q使得Q'M'BMQ=DD为对角阵.令P=MQ即可
S^-1AS=C=diag(a1*I1,a2*I2,...,ar*Ir)分为r块,每块特征值相同,Ii都是单位阵SCS^-1B=AB=BA=BSCS^-1,左乘S^-1,右乘S,得CS^-1BS=S^
a'(ab)a=ba,而a'和a是可逆矩阵,着显然是“相似矩阵”的定义,所以ba和ab相似
因为|A|≠0所以A可逆所以A^-1(AB)A=BA所以AB与BA相似.再问:还有设3阶矩阵A的特值为λ1=1λ2=0λ3=-1p1^T=(122)p2^T=(2-21)p3^T=(-2-12)球A还
证明(AB)是可逆矩阵?没弄错么这样就不是方阵了何来可逆.再问:我下面写了第二行是BA啊再答:AB列变换A-BB行变换A-BBBAB-AA0A+B所以其行列式为|A-B||A+B|A+B与A-B均为可
首先,你应该知道下面几条:1).一个矩阵为对称矩阵,则此矩阵等于他的转置矩阵.因此,由条件A为对称矩阵,可知A=A^T2).要证明B^TAB是对称矩阵,就是要证明此矩阵等于他的转置矩阵,即证明B^TA
证明:由A可逆,有A^-1(AB)A=BA所以AB与BA相似.
设A的R(A)=r,则Ax=0的解空间的维数为n-r,再设B=[b1,b2,..,bn],其中b1,b2,..,bn是矩阵B的列,由AB=O,得Ab1=O,Ab2=0,...,Abn=0,故b1,b2
AB=0表示B的列都属于Ker(A),那么r(A)+r(B)
还可能等于-1.再答:可以收藏我哦
再问:那俩箭头啥意思再答:这都不知道,充分性、必要性这里只是提供思路,书写是不规范的,将就着看吧再问:哦,谢谢再答:不客气
再答:判断矩阵B是不是对称的,就验证B的转置和它本身是否相等。再问:给力
只要借助转置和逆的穿透律以及正交矩阵的定义即可,证明如图
正定的充分必要条件是所有特征值为正,故可如图证明.经济数学团队帮你解答,请及时采纳.谢谢!
AA^T=A^TA=E,A^(-1)=A^T|A|^2=1,|A|=1.-1A*=|A|A^(-1)=A^T或者-A^TA*=A^T时,A*(A*)^T=A^T(A^T)^T=A^TA=EA*=-A^
(1)对于选项A.若λE-A=λE-B,则:A=B,但题目仅仅是A与B相似,并不能推出A=B,故A错误;(2)对于选项B.相似的矩阵具有相同的特征值,这个是相似矩阵的性质,这是由它们的特征多项式相同决