设矩阵Am*n的秩R(A)=m,则下列结论正确的是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 23:50:34
设矩阵Am*n的秩R(A)=m,则下列结论正确的是
设矩阵Am×n的秩R(A)=m<n,Em为m阶单位阵,则下列正确的是

题目不对吧,C中是说初等变换?C,D都对.再问:希望老师对每一选项都做一下点评,讲一下对或错的原因,谢谢!C选项的更正:C.A通过初等行变换,必可化为(Em,O)形式另外卷答案是C一项?再答:设A=0

设矩阵Am*n的秩R(A)=m

BA=0转置一下A^TB^T=0因为r(A^T)=r(A)=m所以A^TX=0只有零解而B^T的列向量都是A^TX=0的解所以B^T=0所以B=0

设m×n矩阵A的秩R(A)=m

无解A和B只需一个例子就可以排除矩阵{100;010}的秩为2

设A是m*n矩阵,证明A的秩等于其转置矩阵的秩,即r(A)=r(A')

(A)等于A的行向量组的秩,等于A'列向量组的秩,等于r(A')

设矩阵Am*n的秩R(A)=m

正确因为B可逆所以RA(B)=R(A)=m.知识点:若P,Q可逆,则R(PA)=R(AQ)=R(PAQ)=R(A)

设A是m*n矩阵,证明:r(A)=r的充分必要条件是存在m阶可逆矩阵P和n阶可逆矩阵Q,

提示:可逆矩阵可以看成若干初等矩阵的乘积.用等价矩阵秩相等去证.

设 m*n矩阵A的秩为r,求矩阵B=(A的广义逆矩阵)×A的奇异值矩阵

高中数学还号大学数学已经都忘光了看来要专业人士解决了!自卑了

设A是m×n矩阵,R(A)=r,证明存在秩为r的m×n矩阵B与秩为r的r×n矩阵C,使A=BC

题目有点小错误,B的阶数是mxr,否则不能随便乘取m阶可逆阵P和n阶可逆阵Q使得A=PDQ,其中D=I_r000取B为P的前r列,C为Q的前r行即可.

设矩阵Am*n的秩r(A)=m〈n,B为n阶方阵,则

正确因为B可逆所以RA(B)=R(A)=m.知识点:若P,Q可逆,则R(PA)=R(AQ)=R(PAQ)=R(A)再问:谢谢!!!

考研数学三:线性代数矩阵和秩的问题 设A是m*n矩阵,r(A)=m

这个就可以当公式来用,如果非要证明的话,如下:r(At*A)≤min(r(At),r(A)),而r(A)=r(At),所以r(At*A)=r(A)

设A为M乘N的矩阵,且A的秩R(A)=M

知识点:向量组a1,...,as线性无关的充要条件是向量组的秩等于s.R(A)=M,所以A的行向量组的秩为M.而A有M行,所以A的行向量组线性无关.R(A)=M,所以A的列向量组的秩为M.而A有N行,

设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则(  )

∵C是n阶可逆矩阵∴C可以表示成若干个初等矩阵之积,即C=P1P2…Ps,其中Pi(i=1,2,…,s)均为初等矩阵.而:B=AC,∴B=AP1P2…Ps,即B是A经过s次初等列变换后得到的,又初等变

设A是m*n矩阵,B为n×s矩阵,r(A)=r<n,且AB=0.证明:秩(B)≦n-r

证:将B按列分块为B=(b1,...,bs)因为AB=0所以A(b1,...,bs)=(Ab1,...,Abs)=0所以Abi=0,i=1,...,s即B的列向量都是齐次线性方程组AX=0的解向量所以

设矩阵A(m*n)的秩r(A)=n,则非齐次线性方程组Ax=b()

选择C,对(A|b)(b=(b1,b2,……bn)’)进行初等矩阵变换可得见图片(画得不好,但可以表示就行),其中最后一列b1',b2',……  bn'&n

设N*M阶矩阵A的秩为R,证明:存在秩为R的N*R阶矩阵P及秩为R的R*M阶矩阵Q,使A=PQ

取可逆阵X和Y使得A=X*diag{I_R,0}*Y然后P取成X的前R列,Q取成Y的前R列就行了再问:大神,本人愚钝,表示完全看不懂啊,可以说的详细一点吗。。再答:如果第一行不懂就去看教材,这是基本结

线性代数:设A为m x n矩阵且秩(A)=r的充要条件是

D-----根据定义,矩阵的秩是最高阶非零子式的阶.A的秩是r,所以高于r阶的子式全为零,且r阶子式一定有非零的.

设A为m×n矩阵,且r(A)=r<n.求证:存在秩为n-r的n×(n-r)矩阵B,使得AB=O

请参看李永乐线性代数讲义关于经典等式r(AB)=0等价于r(a)+r(b)

设r(Am*n)=m,证明:存在秩为m的n*m矩阵B,使得AB=E

因为r(A)=m所以对任一n维列向量b,线性方程组Ax=b总是有解特别对n维基本向量ε1,ε2,...,εn,Ax=εi有解xi令B=(x1,x2,...,xn)则AB=(Ax1,Ax2,...,Ax