设直线l1与曲线y=根号x相切与点p直线l2过点p
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 16:52:42
lim(n->∝)√n*√f(2/n)=lim(n->∝)√2*√[f(2/n)/(2/n)]=√2lim(n->∝)√f(2/n)/(2/n)n->∝,2/n->0,u=2/n=√2lim(u->0
1、y=5(2x)^(1/2)y'=(5/2)(2x)^(-1/2)*(2x)'=5/√(2x)平行则切线斜率=25/√(2x)=2x=25/8y=25/2所以是8x-4y+25=02、设切点(a,5
如果知道倒数的概念则有y'=2x=4x=2故交点为(2,4)常规不用导数设l:y=4x+b联立y=x^x^-4x-b=0因为相切故判别式为016+4b=0b=-4故x^-4x+4=0解为x=2切点(即
圆心(3,4)到切线距离等于半径r=2斜率不存在时,是x=1,满足圆心到切线距离等于半径斜率存在y-0=k(x-1)kx-y-k=0则|3k-4-k|/√(k²+1)=2平方k²-
y=kx与y=根号(x-1)仅有一个交点:kx=根号(x-1),所以k>0由k^2*x^2-x+1=0得k=0.5
由于曲线f(x)与y=sinx在原点相切,则f(0)=0,f'(0)=y'(0)=cos0=1剩下部分看图片
设f(x)=1/x,g(x)=x^2则当f(x)=g(x)时,x=1所以交点为(1,1)对两函数求导f’(x)=-(1/x^2)g'(x)=2x所以L1,L2在(1,1)处的切线分别为L1:y=-x+
设:P(m,√m)则l1方程为y=(1/2√m)(x-m)+√ml2方程为y=-2√m(x-m)+√m得Q点坐标为(m+(1/2),0)又K(m,0)所以KQ的长为1/2
y=x^2y'=2x设切点为(a,a^2),则切线为y=2a(x-a)+a^2=2ax-a^2代入点(1,-3),-3=2a-a^2即a^2-2a-3=0(a-3)(a+1)=0a=3,-1故直线有两
①解:设所求的切线过曲线y=5x^1/2上的x0点由y=5x^1/2求导得出所求切线的斜率y│x=x0=5/(2根号x0)所求的切线与直线y=2x-4平行的斜率是25/(2根号x0)=2得x0=25/
设切点为(x,y)y=x²...(#)y'=2x,这是曲线在切点处的斜率切线斜率=(x-5)/(y-3)即2x=(x-5)/(y-3)2x(y-3)=x-52xy-6=x-52xy-x-1=
设:P(m,√m)则l1方程为y=(1/2√m)(x-m)+√ml2方程为y=-2√m(x-m)+√m得Q点坐标为(m+(1/2),0)又K(m,0)所以KQ的长为1/2
曲线x=√(1-y²)可以转化为:x²+y²=1【因为x≥0,则此曲线表示的是圆x²+y²=1的右半圆,即在直线y=0右侧(包括直线y=0上的点)】,
如果你没有学导数:设所求直线为y=a(x+1),曲线y=根号x单调递增,其切线必然与该曲线只有切点这一个交点.也就是说联立两方程只有唯一解,联立得到(ax)^2+(2a^2-1)x+a^2=0,该方程
设直线.L1与曲线y=根号x相切于点P(p,√p),y'=1/(2√x),∴L1的斜率=1/(2√p),直线L2过点P且垂直于L1,∴L2的斜率=-2√p,L2:y-√p=-2√p(x-p)交x轴于Q
半径r=圆心到直线L1的距离d=2倍根号2/根号2=2根据圆心到切线的距离等于半径,还有点到直线的距离公式所以,圆的标准方程:x²+y²=4
y=5√xf'(x)=5/(2√x)平行时,f"(x)=2x=25/16f(x)=25/4切线为y-25/4=2(x-25/16)设切点(t,f(t))切线为y-5√t=5/(2√t)(x-t)代入(